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Abstract 

The aim of this study was to obtain new catalysts for the processing 
of carbon-containing polymer waste based on polyethylene and poly-
propylene, represented mostly by lids from beverages bottled in plas-
tic containers, which accumulate in huge quantities in landfills, by 

the method of thermocatalytic hydrogenation into liquid fuels and oth-
er products. The process was carried out in the presence of fuel oil as 
a binder, a source of hydrogen and additional hydrocarbons. Thus, two 
tasks can be solved simultaneously: recycling the polymer waste and 
obtaining the alternative raw materials from the polymer waste in or-
der to save resources and improve the environmental situation in gen-
eral. New catalysts based on activated zeolite modified with Mo(VI) 
and W(VI) salts of various concentrations for the thermocatalytic hy-
drogenation processing of waste plastics into motor fuels were synthe-
sized. The composition, structure, morphology and adsorption proper-
ties of the catalysts were determined by different physicochemical 

methods. The suitability of the obtained catalysts for use in the 
thermocatalytic hydrogenation processing of plastic waste into fuels 
was determined. The catalysts were tested during the processing of a 
mixture of polyethylene-polypropylene: a paste-forming agent (fuel 
oil) at T=450 °C and a pressure of 0.6 MPa. The individual and group 
composition of gasoline, diesel and gas oil fractions was determined 
by chromatography coupled with mass spectrometry. The maximum 
yield of the gasoline fraction (16.9 wt.%) and diesel fraction (39.31 
wt.%) was obtained on a 2%W(VI)/diatomite catalyst. 

Keywords 
polymer waste 

thermocatalysis 

hydrogenation 

catalyst 

fuel 

diatomite 

Received: 12.06.22 

Revised: 28.06.22 

Accepted: 30.06. 22 

Available online: 05.07.22 

 

1. Introduction 

The problem of environmental pollution with carbon-

containing industrial and household waste based on poly-

mer and rubber products needs to be addressed. The main 

ways of the disposal of such waste are incineration and 

storage [1–15]. If we consider these carbon-containing 

wastes as an alternative source of hydrocarbons, then the 

development of new integrated technologies based on the 

use of effective catalysts will allow us to fully solve the 

existing environmental threats in the future. Moreover, it 

will make it possible to saturate the market with the nec-

essary fuels, products and materials [16–23].  

In the laboratory of the Department of Physical Chem-

istry, Catalysis and Petrochemistry of the Al-Farabi Ka-

zakh National University, tests of new composite catalysts 

for the thermocatalytic hydrogenation processing of poly-

mer waste were carried out. Composites based on Mo(VI) 

and W(VI) salts deposited on a diatomite substrate were 

studied for the first time as catalysts.  

As is known, diatomite is a natural aluminosilicate 

material of a macroporous structure with a large internal 

surface formed as a result of the vital activity of 

organisms – diatomies. It has a complex “cemented” 

composition and contains inclusions of various minerals, 

such as silica, quartz, kaolin, opal, etc. Such a structure 
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allows us to consider it as a natural ion exchanger and 

adsorbent, as well as a substrate for the deposition of 

active catalysts [24–27].  
The aim of this work was to synthesize new catalysts 

for the processing of carbon-containing polymeric wastes 

based on polyethylene and polypropylene, mainly 

represented by lids from drinks poured into plastic 

containers, which accumulate in large quantities in 

landfills, by thermal catalytic hydrogenation into liquid 

fuels and other products. The process was carried out in 

the presence of fuel oil as a binder, a source of hydrogen 

and additional hydrocarbons. 

2. Experimental 

In this work, diatomite from the Aktobe deposit of the Re-

public of Kazakhstan was studied. The concentration of 

the active metal in the composite was varied in the range 

from 1 to 2 wt.%. The effect of 4 different catalysts on the  

thermocatalytic hydrogenation processing of plastic waste 

was studied: diatomite activated by the acid-free method, 

2% Mo(VI)/diatomite, 2% W(VI)/diatomite, and 

(1%Mo(VI) and 1%W(VI))/diatomaceous earth. As a feed-

stock, polymeric wastes crushed to the state of crumbs 

from a waste processing plant in Almaty, represented by a 

mixture of polyethylene and polypropylene lids, were 

studied. To impart viscous paste-forming properties to the 

polymer mixture, fuel oil with a boiling point of more than 

350 °С, obtained during the distillation processing of oil 

from the Kumkolskoe field, was used. As is known from 

our previous studies [6, 28–31], fuel oil was used not only 

as a paste-forming agent, but also as an additional source 

of hydrocarbons and hydrogen necessary for the hydro-

genation reaction to proceed. In order to determine the 

composition, structure, morphology and adsorption prop-

erties of the studied catalysts, such physico-chemical 

methods of analysis as X-ray fluorescence, IR spectrosco-

py, Scanning Electron Microscopy (SEM), adsorption ni-

trogen porometry (BET), X-ray Diffraction analysis (XRD), 

thermogravimetric analysis (TGA) and differential ther-

mogravimetric analysis (DTGA) were used.  

3. Results and discussion 

The presence of tungsten immobilized on the surface of 

diatomite during ion exchange in the composition of cat-

alysts was established by X-ray fluorescence (Figure 1). 

The process of ion exchange was accompanied by a de-

crease in the structure of diatomite of the concentrations 

of potassium, chromium, iron, as well as aluminum and 

silicon, which may indicate a possible destruction of the 

M–O–Si (where “M” is a metal) bond, a slight destruction 

of the Si–O–Si bond, and a partial removal of the six-

coordinate aluminum. 

 

 

 
Figure 1 Data of X-ray fluorescence analysis: 2% W(VI)/diatomite 

catalyst (a); the catalyst 1% Mo(VI) – 1% W(VI)/ diatomite (b); 

an activated diatomite (c).  

 

(b) 

(a) 

(c) 
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So, for example, in the composition of activated diato-

mite, the concentration of Si was 65.30%, in 2% 

W(VI)/diatomite – 33.40%; in 2% Mo(VI)/diatomite – 

45.40% in (1% Mo(VI) and 1% W(VI))/diatomite – 

49.10%, respectively. The Al concentration was 12.22%, in 

2% W(VI)/diatomite – 8.74%; in 2% Mo (VI)/diatomite – 

22.45% in (1% Mo(VI) and 1% W(VI))/diatomite – 0%, 

respectively. The presence of molybdenum in the catalyst 

samples could not be determined by this method.  

The study of the morphology of catalysts by SEM at dif-

ferent magnifications showed the presence in the images 

of distinct sections of the cellular structure inherent in 

diatomite, as well as loose and convex oval inclusions, 

most likely corresponding to the sites of destruction of 

diatomite and the introduction of molybdenum and tung-

sten ions into the substrate structure as a result of ex-

change with other ions (Figure 2). 

The images clearly show integral fragments of the flaps 

of various organisms – diatoms with their inherent cellular 

structure, macropores with the inclusion of meso- and mi-

cropores, which indicates the heterogeneity of the surface 

of the diatomite. The samples of the studied catalysts, regard-

less of the content of the active metal, have a sufficiently de-

veloped specific surface area and are of interest for studying 

their structure by nitrogen porometry with a view to further 

use as a carrier of the active phase of the catalyst. 

According to the data of the BET analysis (Table 1), in 

pure diatomite, the adsorption and desorption indices dif-

fer from those in the samples of catalysts with Mo and W 

active centers immobilized on them. This is also apparent-

ly due to a change in the structure of the catalyst after ion 

exchange treatment. The maximum value of the specific 

surface corresponds to the sample of  

2% W(VI)/diatomite – 42.71 m2/g. 

 
Figure 2 Study of the morphology of the catalysts by SEM: 2% W(VI)/diatomite (10 μm (a), 20 μm (b), 100 μm (c));  
2% Mo(VI)/diatomite (10 μm (d), 20 μm (e), 100 μm (f)); 1% Mo(VI) – 1% W(VI)/diatomite (10 μm (g), 20 μm (h), 100 μm (i)). 
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Table 1 Determination of the specific surface area of catalysts by 

the BET method. 
Catalyst Sspecific surface area, m²/g 

2% W(VI)/diatomite 60.76 

2% Mo(VI)/diatomite 42.71 

1% Mo(VI) – 1% W(VI)/diatomite 14.39 

Activated diatomite 34.41 

The study of catalyst samples by IR spectroscopy 

showed the presence in the spectra, mainly, of absorption 

bands characteristic of diatomite, since it has a complex 

composition and contains, in addition to Si and Al oxides, 

a number of oxides of various metals, such as Mn, Fe, Ti, 

Cr, K, etc. However, during the processing of Mo(VI) and 

W(VI) diatomite separately and with the total presence, a 

slight shift of the peak at 1098.94 cm–1 from 0.038 to 

0.045 cm–1 is observed, corresponding to strong valence 

and deformation vibrations of Si–O–Si silica and quartz, as 

well as weak vibrations in the region of 460, 550, 804, 951 

cm–1, valence fluctuations at 3450–3500 cm-1, correspond-

ing to the OH group; valence fluctuations in the region of  

3630–3695 cm–1, characteristic of clay and mica. 

The activated diatomite and W(VI)/diatomite catalyst 

samples were analyzed by TGA and processed by DTGA. As 

the analyzes showed, the destruction of samples under the 

influence of temperature occurs intensively up to 130–

135 °С, then it somewhat slows down until reaching 450–

470 °С and then the final destruction occurs up to 898 °С 

(Figure 3 and 4). The TGA curves for both catalysts are ap-

proximately the same. The greatest mass loss of the sample, 

therefore, will be achieved already at the temperature of 

thermodestructive hydrogenation processing, which is 

450 °С. However, the percentage of mass loss by the acti-

vated diatomite is insignificant and amounts to only 

4.553%, and by the W(VI)/diatomite catalyst – 6.323%, 

respectively, which may indicate their resistance to tem-

perature and the formation of disilicates (600–650 °С) with 

their further transition to the melt above 700 °С. 

 
Figure 3 Data of TGA and DTA analysis of activated diatomite. 

 
Figure 4 Data of TGA and DTGA analysis of the catalyst 
W(VI)/diatomite. 

Based on the X-ray phase analysis (XRD) of the studied 

catalysts, it was also found that the main contribution is 

made by the crystalline and amorphous phases of diato-

mite and minor fluctuations in intensity may be due to the 

presence of Mo(VI) and W(VI) salts. 

The obtained catalysts were tested for processing a 

polyethylene-polypropylene mixture in the presence of a 

paste-forming agent at T = 450 °С and a pressure of 

0.6 MPa. The maximum yield of the gasoline fraction  

(Tboiling point=0–180 °С) was observed on a catalyst of 

2%W(VI)/diatomite – 16.90 wt. %.  

The material balance of the most significant process 

under given conditions is presented in Table 2.  

Table 3 shows the group composition of hydrocarbons 

of the gasoline fraction obtained on the catalyst 2% 

W/diatomite. 

The hydrocarbon composition of distillates obtained on 

the synthesized catalysts was studied by chromatography–

mass spectrometry. The chromatogram of the gasoline 

fraction boiling in the range of 0–180 °C obtained on a 2% 

W/diatomite catalyst is shown in Figure 5. 

The main conclusions obtained as a result of the physi-

cochemical studies and experimental tests of catalysts in 

this work are in agreement with the data mentioned in the 

scientific literature [2, 5, 32–41]. 

Table 2 Material balance of the thermocatalytic hydrogenation 
processing of polymer waste on a catalyst  

2% W(VI)/diatomite (T = 450 °С, P = 0.6 MPa). 

Taken Wt.% Consumption Wt.% 

Catalyst 2.00 Gasoline fraction 0–180 °С 16.90 

Polymer 

waste 
49.02 

Diesel fraction 180–250 °С 39.31 

Heavy gas oil fraction  

250–320 °С 
– 

Fuel oil 49.02 
Losses, water,  

sediment 
30.08 

Gas 13.68 

Total 100 Total 100 

Table 3 Chemical composition of the gasoline fraction (Tboiling point = 0–180 °С) obtained on a 2% W/diatomite catalyst. 

Liquid fraction 

Hydrocarbons, % 

Alkanes Isoalkanes Alkenes 
Cyclo 

alkanes 

Cycloal-

kenes 
Aromatic 

Heterocom-

pounds 

0–180 °С 58.65 4.08 7.01 5.48 – 22.83 1.08 
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Figure 5 Chromatogram of the gasoline fraction  

(Tboiling point = 0–180 °C) obtained on a 2% W(VI)/diatomite catalyst. 

4. Conclusions 

In this paper, the new composite catalysts based on acti-

vated zeolite modified with Mo(VI) and W(VI) salts of dif-

ferent concentrations for the thermocatalytic hydrogena-

tion processing of plastic waste into motor fuels were de-

veloped. The basic physicochemical properties of the syn-

thesized catalysts: the elemental and phase composition, 

surface morphology, specific surface area and the optimal 

destruction temperature were obtained. Based on the re-

sults of the experiments and the calculation of the materi-

al balance of the process, it was found that the catalyst 2% 

W/diatomite is the most active in the yield of the total 

liquid product. The effectiveness of the obtained compo-

site catalysts is confirmed by the group hydrocarbon com-

position of fractions boiling up to 180 °C, from 180 to 

250 °C, from 250 to 320 °C, determined by gas-liquid 

chromatography-mass spectrometry. 
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