Для всех изученных дикетонов первой стадией взаимодействия с пентахлоридом фосфора является гетероциклизация (соединения 2, 5a,b), затем наблюдается присоединение хлора по двойной связи возникающего гетероцикла 5a,b (соединение 6a) и только при четырех-пятикратном избытке реагента происходит его взаимодействие по карбонильной группе алициклической части молекулы дихлоркетона 6a, приводящее к трихлорпроизводному 9a. Такая последовательность превращений оксо-1,5-дикетонов 4a,b свидетельствует о важной роли для изученных процессов не только электронных, но и стерических факторов.

Состав и строение полученных соединений подтверждены данными элементного анализа, ИК, ПМР спектроскопии.

ПОЛУЧЕНИЕ β -АКРИЛОИЛОКСИПРОПИОНОВОЙ КИСЛОТЫ Карпухин В.О., Пестов А.В., Ятлук Ю.Г.

Уральский государственный университет, Екатеринбург

Институт органического синтеза УрО РАН, Екатеринбург

В-Акрилоилоксипропионовая кислота - формальный димер акриловой кислоты – уникальный с точки зрения органического синтеза реагент, обладающий неограниченной растворимостью в воде: в кислой среде в виде кислоты и в щелочной среде в виде соли, сохраняющий при этом высокую реакционную способностью в реакциях присоединения, водифе акриловой Впервые характерную для кислоты. акрилоилоксипропионовая кислота была получена А.Я.Берлином в 1937 году нагреванием акриловой кислоты в фуране при 160°C с выходом менее 35%. Гораздо позднее японскими исследователями было показано, что нагревание самой акриловой кислоты под давлением при 120-180°С в течение 2-16 часов обеспечивает выход 22-71% (наличие растворителя уменьшает выход); было предложено также проведение димеризации в динамическом режиме, путем пропускания акриловой кислоты через колонку с сульфосмолой - 110°C, 6 часов; выход 76% (наличие растворителя и отсутствие катализатора или использование карбоксильного катионита уменьшает выход).

С целью разработки дешевого метода получения β-акрилоилоксипропионовой кислоты, мы предложили проводить димеризацию в присутствии доступного катализатора – серной кислоты (условия синтеза: № 1-3 – в аргоне, 4-6 – в запаянной ампуле).

2 CH₂=CH-COOH
$$\stackrel{\text{H}^+}{\longrightarrow}$$
 H₂C=CH-COOH OCH₂CH₂COOH

No	Кат.	Кол-во кат., % мол.	Способ ней- трал. кат.	T, °C	Время,	Выход,
1	_	_	_	140	3	0
2	КУ-2	2.3	отделение катализатора	110	6	6
3	H ₂ SO ₄	1.0	КОН	110	6	12
4	H ₂ SO ₄	5.4	акрилат на- трия	110	48	10
5	H ₂ SO ₄	1.4	акрилат на- трия	140	6	7
6	H ₂ SO ₄	1.4	-	140	6	69

Как видно из представленных данных, кислый катализ обязателен. Первоначально казалось, что при выделении продукта необходима нейтрализация кислоты. Для этой цели использовали КОН или, лучше, акрилат натрия, чтобы в процессе нейтрализации не образовывалась вода с последующим присоединением к продукту. Было обнаружено, что нейтрализация серной кислоты не нужна, ее наличие, по всей видимости, обеспечивает дополнительное протекание реакции димеризации при перегонке продукта.

Таким образом, нами предложен эффективный метод получения β-акрилоилоксипропионовой кислоты, которая далее может быть использована как высоко реакционноспособный реагент для полимераналогичных превращений.

ИСПОЛЬЗОВАНИЕ ТЕТРАЦИАНОЭТАНА В СИНТЕЗЕ ФОСФОРИЛИРОВАННЫХ ПИРРОЛОВ

Киселев Д.И., Парамонов С.А., Васильев А.Н., Смирнов М.П., Лыщиков А.Н. Чувашский государственный университет, Чебоксары

Современная химия уделяет особое внимание азотсодержащим гетероциклам, выполняющим различные функции в живой природе. Особое значение при этом имеют производные пиррола. Так, структуру