ИЗУЧЕНИЕ АНТИРАДИКАЛЬНЫХ СВОЙСТВ 2.4-ДИФЕНИЛ-5,6-ДИГИДРО-4H-БЕНЗО[h]СЕЛЕНОХРОМЕНА

Хайруллина В.Р., Гарифуллина Г.Г., Герчиков А.Я., Сунаргулова А.Ф., Булякова Г.Д., Древко Я.Б., Федотова О.В.

Башкирский государственный университет, Уфа

Саратовский государственный университет

Целью настоящей работы было изучение антиокислительных свойств 2-(4-дифенил)-4-фенил-5,6-дигидро-4H-бензо[h]-селенхромена на модельной реакции жидкофазного окисления пропан-2-ола в инициированном режиме.

Синтез 2-(4-дифенил)-4-фенил-5,6-дигидро-4H-бензо[h]-селенхромена проводили в присутствии триметоксифосфина, который пассивирует вторичные реакции диспропорционирования, сопровождающие реакции 1,5-дикетонов с селеноводородом. В условиях синтеза образование дигидроселенохромена (II) из дикетона I происходит с 91%-ным выходом. Структура полученного соединения установлена методами ГЖХ с масс-селективным детектором, ЯМР ¹Н и ИК спектрометрии.

Антиокислительную активность (AOA) II изучали на модельной реакции инициированного окисления пропан-2-ола в кинетическом режиме при 348 К (инициатор — азодиизобутиронитрил). Эффективность антиокислительного действия образца оценивали по степени снижения начальной скорости поглощения кислорода при окислении модельного субстрата в его присутствии. В качестве измерительного инструмента использовали универсальную манометрическую дифференциальную установку. Для количественной оценки AOA II использовали эффективную константу скорости обрыва цепи окисления fk_{In} , где f- ёмкость ингибитора. В качестве эталона сравнения выбрали стандартный ингибитор ионол, для которого в отдельных экспериментах найдено значение fk_{In} =(4,2 ± 0,4)•10⁴ л/моль•с. В результате кинетических исследований найдена эффективная константа скорости ингибирования fk_{In} = (2,9±0,5)·10⁴ л/моль•с. Установлено, что II по эффективности антиокис-

лительного действия в 2,5 раза слабее известного ингибитора окислительных процессов ионола.

Работа выполнена при финансовой поддержке аналитической ведомственной целевой программы Минобрнауки РФ «Развитие научного потенциала высшей школы (2006 - 2008 годы)», проект РНП 2.2.1.1.6332.

СИНТЕЗ ОКСИГЛИЦЕРОЛАТОВ ЦИРКОНИЯ

Алябышев А.В. 1 , Пузырев И.С. 2 , Ятлук Ю.Г. 2 Уральский государственный университет, Екатеринбург

²Институт органического синтеза УрО РАН, Екатеринбург

В настоящее время для получения наноразмерных оксидов, используемых при производстве оптической керамики и топливных элементов, широко применяют методы совместного осаждения гидроксидов из растворов с последующим их обжигом, а также золь-гель метод.

Данная работа нацелена на разработку метода получения диоксида циркония, имеющего высокоразвитую поверхность, путем синтеза гелей оксиглицеролата циркония – прекурсора для синтеза нанооксида.

Для приготовления вышеназванных производных готовили концентрированный водно-глицериновый раствор хлорида или нитрата цирконила, к которому приливали хлороформенный раствор динониламина (мольное соотношение цирконий:амин = 1:2; 1:4), образовавшийся гель отделяли, промывали хлороформом, сушили до постоянной массы. Данные элементного анализа образцов представлены ниже (условия синтеза: №1-2 – 10%, 3-4 – 25% растворы динониламина, время синтеза 24 ч).

№	Соль цирко- нила	Соотношение					Cl,		Вимол
		Zr : глице- рин	Zr : амин	C,%	Н,%	N,%	%	Zr,%	Выход, %
1	нитрат	1:4	1:2	29,76	6,53	1,03	0	16,98	29,7
2	хлорид	1:4	1:2	29,19	6,88	0	5,31	15,00	24,1
3	хлорид	1:4	1:2	27,83	6,43	0	3,04	22,17	56,2
4	хлорид	1:4	1:4	28,87	5,47	0	4,69	18,60	49,8

Как видно из полученных данных, большие выходы обеспечивает использование хлористого цирконила. Было показано, что при переме-