вации переноса практически не изменяется ($\sim 0.8~\mathrm{3B}$). Очевидно, такое поведение объясняется эффектом разбавления непроводящим компонентом.

Использование растворной методики синтеза позволяет уменьшить размер зерен основного компонента, что приводит к лучшей сопрягаемости оксидной матрицы и нано-добавки. Исследования проводимости композитов на основе $Ba_4Ca_2Nb_2O_{11}$, полученного растворным методом, показали, что для состава с 10 мол.% Al_2O_3 при температурах ниже 600° С наблюдается увеличение общей проводимости почти на порядок величины по сравнению с $Ba_4Ca_2Nb_2O_{11}$, не содержащим добавки. При дальнейшем увеличении содержания Al_2O_3 электропроводность начинает снижаться. Таким образом, можно предполагать существование композитного размерного эффекта, однако требуются дальнейшие исследования, в частности, изучение влияния гетерофазной добавки на электропроводность при вариации парциального давления паров воды.

Термогравиметрические исследования показали, что в атмосфере влажного воздуха композиты способны интеркалировать воду. Для состава с 10 мол.% Al_2O_3 общее количество внедренной воды составило \sim 60% от теоретического предела гидратации. Эти данные подтверждают наличие протонов в структуре и позволяют предполагать доминирующий протонный транспорт при температурах ниже 500 °C.

Работа выполнена при поддержке грантов РФФИ № 05-03-32799, CRDF.

ВЛИЯНИЕ рН НА ПАССИВАЦИЮ И ЛОКАЛЬНУЮАКТИВАЦИЮ КАДМИЯ В ВОДНЫХ СРЕДАХ

Викулова Е.В., Рылкина М.В. Удмуртский государственный университет, Ижевск

Потенциодинамическим методом изучено влияние pH на анодное поведение, пассивацию и локальную активацию кадмия в боратных буферных растворах, а также влияние хлорид-ионов на питтингостойкость кадмия. Исследования проводили на образцах кадмия (Cd, 98.4 масс. %) в боратных буферах с pH 6.55....8.26 без и в присутствии хлорид-ионов. Концентрацию NaCl (C_{Cl}^-) изменяли в пределах 10^{-5} - $5\cdot10^{-2}$ моль/л.

Показано, что в слабо щелочной среде (pH \geq 7.00) кадмий устойчиво пассивен, тогда как в слабо кислой среде (pH 6.55) активно растворяется. Согласно анодным поляризационным кривым, циклическим вольтамперограммам и зависимостям потенциалов пассивации от pH кадмий пассивен благодаря образованию на его поверхности труднорастворимого гидроксида Cd(OH)₂. Склонность кадмия к пассивации возрастает с уменьшением кислотности буферного раствора, поскольку снижается

растворимость $Cd(OH)_2$. По мере увеличения рH фонового электролита в интервале от 7.00 до 7.78 потенциалы пассивации E_{π} и полной пассивации $E_{\pi n}$, а также соответствующие им плотности тока незначительно уменьшаются.

Введение в раствор хлорид-ионов приводит к локальной активации кадмия, что сопровождается образованием питтингов на поверхности электрода. Склонность кадмия к пассивации в боратном буфере с pH 7.4 снижается по мере повышения C_{Cl}^{-} .

Локальная активация кадмия характеризуется двумя потенциалами, а именно, потенциалами питтингообразования $E_{\rm nr}$ и пробоя $E_{\rm np}$. При высоких $C_{\rm Cl}$ депассивация кадмия наступает уже при потенциале коррозии, $E_{\rm nr}$ практически не зависит от $C_{\rm Cl}$. С увеличением содержания хлорид-ионов в электролите область пассивации сужается. Питтинги при $E > E_{\rm nr}$ представляют собой мельчайшие блестящие ямки травления, тогда как при $E > E_{\rm np}$ поверхность кадмия покрыта темно серой матовой пленкой $Cd(OH)_2$, а питтинги заполнены продуктами коррозии белого цвета.

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ, ПРОТЕКАЮЩИХ ПРИ ВЗАИМОДЕЙСТВИИ ВОДНЫХ РАСТВОРОВ ФЕРРАТОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ С МЫШЬЯКОВИСТОЙ КИСЛОТОЙИ ЕЕ СОЛЯМИ

Гриб О.П., Смирнов С.В. Уральский государственный лесотехнический университет, Екатеринбург

Устойчивым степеням окисления мышьяка «+3» и «+5» отвечают мышьяковистые (мета- и орто-) и мышьяковая кислоты. По силе мышьяковистые и мышьяковая кислота близки к соответствующим фосфористой и ортофосфорной кислотам. Соли этих кислот по растворимости также похожи. Подобно ортофосфатам, подавляющее большинство арсенатов металлов практически нерастворимы в воде. Обезвреживание соединений мышьяка(Π) путем перевода их в менее токсичные соединения мышьяка(V) осуществляется с помощью сильных окислителей.

Целью данной работы является изучение процессов, протекающих при обезвреживании и очистке водных растворов от соединений мышьяка(III), с использованием имеющихся в литературных источниках термодинамических характеристик реагирующих соединений. В качестве реагента, выполняющего функции окислителя и, одновременно, образующего малорастворимый арсенат железа(III), выбраны ферраты(VI) натрия и калия. Моделирование проведено методами компьютерного