

	,
№ поля	Фазовый состав
RICOII	
1	SrO, Sr ₃ (Fe _{1-y} Ni _y) ₂ O _{7-δ} (0 <y<math>\leq0.15)</y<math>
2	SrO, Sr ₃ Fe _{1.7} Ni _{0.3} O _{7-δ} , Ni _{0.925} Fe _{0.075} O
3	SrO, Ni _{1-m} Fe _m O ($0 \le m \le 0.075$)
4	$Sr_3(Fe_{1-y}Ni_y)_2O_{7-\delta}$ (0< $y \le 0.15$),
	$SrFe_{1-x}Ni_{x}O_{3-\delta} (0 < x \leq 0.075)$
5	$Sr_3Fe_{1.7}Ni_{0.3}O_{7-\delta}$, $SrFe_{1.925}Ni_{0.075}O_{3-\delta}$,
	Ni _{0.925} Fe _{0.075} O
6	$Sr_4Fe_6O_{14-\delta}, SrFe_{1-x}Ni_xO_{3-\delta} (0 < x \le 0.075)$
7	Sr ₄ Fe ₆ O _{14-δ} , SrFe _{1.925} Ni _{0.075} O _{3-δ} ,
	$Ni_{1.05}Fe_{1.95}O_4$
8	$SrFe_{1.925}Ni_{0.075}O_{3-\delta}, Ni_{1.05}Fe_{1.95}O_4,$
	Ni _{0.925} Fe _{0.075} O
9	Sr ₄ Fe ₆ O _{14-δ} , SrFe ₁₂ O ₁₉ , Ni _{0.81} Fe _{2.19} O ₄
10	$Sr_4Fe_6O_{14-\delta}, Ni_kFe_{3-k}O_4 (0.81 \le k \le 1.05)$
11	$SrFe_{12}O_{19}, Fe_{2-p}Ni_pO_3 \ (0 \le p \le 0.04)$
12	SrFe ₁₂ O ₁₉ , Fe _{1.96} Ni _{0.04} O ₃ , Ni _{0.81} Fe _{2.19} O ₄

ЭЛЕКТРОПРОВОДНОСТЬ И КИСЛОРОДНАЯ НЕСТЕХИОМЕТРИЯ СЛОЖНЫХ ОКСИДОВ LaFe_{1-x}Ni_xO_{3- δ} (x=0.3, 0.6),

 $La_{4}Ni_{2.1}Fe_{0.9}O_{10\text{-}\delta}$

Киселев Е.А., Черепанов В.А.

Уральский государственный университет им. А.М. Горького

Твердые растворы $\text{LaFe}_{1-x} \text{Ni}_x \text{O}_{3-\delta}$ со структурой перовскита широко исследуются в настоящее время благодаря их перспективному использования в качестве катодов топливных элементов, работающих при умеренно высоких температурах.

Электропроводность образцов измеряли четырех-контактным методом при постоянном токе. Кислородную нестехиометрию определяли по данным $T\Gamma A$. Абсолютные значения определяли методом прямого восстановления в токе водорода.

Было показано, что каждое последующее 30%-ное замещение железа на никель в феррите лантана LaFeO_{3- δ} приводит к увеличению на порядок дефицита по кислороду (δ), который при 1000°C составляет $\sim 1 \times 10^{-4}$ [1], 1×10^{-3} и 2.82×10^{-2} для составов с x=0, 0.3 и 0.6 соответственно. Для железозамещенного никелата La₄Ni_{2.1}Fe_{0.9}O_{10- δ} в сравнении с

чистым $La_4Ni_3O_{10-\delta}$ при тех же условиях нестехиометрия отличается менее значительно и соответствует значениям 0.037 и 0.123 [2]. Это соответствует тому, что никель, как более электроотрицательный элемент по отношению к железу, является акцептором электронов и, следовательно, вызывает появление дополнительного количества положительно заряженных вакансий кислорода в ферритах лантана $LaFe_{1-x}Ni_xO_{3-\delta}$. Железо, как более электроположительный элемент в сравнении с никелем, является донорной примесью в кристаллической решетке никелата $La_4Ni_{2.1}Fe_{0.9}O_{10-\delta}$ и, следовательно, препятствует образованию дефектов в кислородной подрешетке.

Положительные значения термо-э.д.с и активационный характер изменения электропроводности с температурой для составов $LaFe_{0.7}Ni_{0.3}O_{3-\delta}$ и $La_4Ni_{2.1}Fe_{0.9}O_{10-\delta}$ свидетельствует о полупроводниковом типе проводимости, осуществляемой за счет электронных дырок. Для тройного оксида $LaFe_{0.4}Ni_{0.6}O_{3-\delta}$ характерен квазиметаллический характер проводимости, а электропроводность осуществляется за счет электронов , о чем свидетельствуют отрицательные значения коэффициентов термо-э.д.с во всем интервале исследуемых параметров.

Совместный анализ данных по кислородной нестехиометрии электропроводности и термо-э.д.с. позволил оценить концентрацию основных носителей заряда, их подвижности электронных дефектов и энергетические характеристики электронного транспорта для исследуемых оксидов.

- 1. Mizusaki J., Yoshihiro M., Yamauchi Sh., Fueki K. $/\!/$ J. Solid State Chem. 1985. V. 58. P. 257-266.
- 2. Bannikov D.O., Cherepanov V.A. // J. Solid State Chem. 2006. V. 179. P. 2721–2727

Работа выполнена при поддержке грантов: РФФИ № 09-03-00620 и 07-03-96079-Урал

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПОТЕНЦИАЛЫ ИТТЕРБИЯ В РАСПЛАВЛЕННОМ ХЛОРИДЕ ЦЕЗИЯ

Новоселова А.В. 1 , Смоленский В.В. 1 , Вотинова О.С. 2 Институт высокотемпературной электрохимии УрО РАН, Екатеринбург

² Уральский государственный университет, Екатеринбург

Потенциометрическим методом проведены измерения окислительно-восстановительных потенциалов иттербия в расплавленном CsCl