КИСЛОТНО-ОСНОВНЫЕ СВОЙСТВА НОВЫХ ФОРМАЗАНОВ

Павлова И.С., Маслакова Т.И., Зайдман А.В., Первова И.Г., Липунов И.Н. Уральский государственный лесотехнический университет 620100, г. Екатеринбург, Сибирский тракт, д. 37

Известно, что условия образования, состав и строение формазанатов металлов определяются характером заместителей в 1,3,5-положениях формазановой группировки, природой металла-комплексообразователя и характером растворителя.

Для определения оптимальных условий синтеза внутрикомплексных соединений прогнозируемого состава в данной работе спектрофотометрическим методом были исследованы бензтиазолилформазаны I-VI.

№ соед.	Структура	R_1	R_2	pK_a
I	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	C ₄ H ₃ O	Н	$7,78 \pm 0,04$
II		C_4H_3S	Н	$7,88 \pm 0,05$
III		C_5H_4N	Н	-
IV		C_4H_3O	OCH_3	$8,92 \pm 0,03$
V		C_4H_3S	OCH ₃	$10,17\pm0,05$
VI		C_5H_4N	OCH ₃	$9,32 \pm 0,06$

При титровании водно-этанольных растворов формазанов I-VI раствором КОН различной концентрации в электронных спектрах наблюдалось батохромное смещение основной полосы поглощения по сравнению с исходными формазанами примерно на 50 нм (рис.), что связано с перераспределением электронной плотности в молекуле формазана, в результате отрыва протона (\mathbf{H}^{+}) от NH-группы. При дальнейшем увеличении величины рН в спектрах наблюдалось лишь увеличение интенсивности полос поглощения. Спектральная картина характеризуется наличием одной ярко выраженной изобестической точки. По результатам спектрофотометрических исследований были рассчитаны константы кислотной ионизации (табл.).

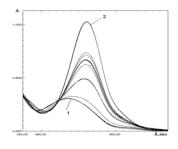


Рисунок — Электронный спектр спектрофотометрического титрования формазана I раствором КОН

1 – исходный формазан;

2 – при добавлении раствора КОН

 $C_{\phi} = 3 \cdot 10^{-5}$ моль/л; $C_{KOH} = 10^{-1}$ моль/л

В результате проведенных исследований выявлено, что незамещенные фурил- и тиофенсодержащие формазаны I и II имеют значения констант кислотной ионизации 7,78 и 7,88 соответственно. Введение в структуру формазанов IV и V дополнительной координирующей метокси-группы R_2 оказало существенное влияние на кислотность данных соединений. Величина рК_а у орто-метокси-фурилсодержащего формазаувеличилась единицу, на одну a орто-метокси-V тиофенсодержащего V - на две единицы, по сравнению с их незамещенными аналогами. Кроме того, наличие ОСН₃-группы в структуре пиридинзамещенного формазана VI позволило получить стабильный анион и рассчитать численное значение константы кислотной диссоциации.

ОПРЕДЕЛЕНИЕ КОФЕИНА МЕТОДОМ ХРОМАТОГРАФИИ В ТОНКОМ СЛОЕ

Чибисова Н.В., Сеньшова Е.Н. Российский государственный университет 236040, г. Калининград, ул. А. Невского, д. 14 chibisovanv@mail.ru baturinaelena@yandex.ru

Содержание кофеина является одной из важнейших характеристик кофе, чая, энергетических и прохладительных напитков. На современном мировом рынке присутствует широкий ассортимент продукции с пониженным содержанием кофеина. В связи с этим возникает потребность в определении содержания кофеина простыми и экспрессными методами анализа. Одним из таких методов является хроматография в тонком слое.

Долгое время главными методами количественного определения хроматограмм являлись планиметрия и денситометрия. С широким распространением цифровых фотоаппаратов и компьютерных программ