СИНТЕЗ, СТРУКТУРА И СВОЙСТВА ВІ(FE,NB)VOX

Субботкина М.И., Морозова М.В., Келлерман Д.Г. Уральский государственный университет 620000, г. Екатеринбург, пр. Ленина, д. 51

Целью данной работы является твердофазный синтез, исследование структуры и магнитных свойств твердых растворов общего состава $Bi_4V_{2\cdot x}Fe_{x\cdot 2}Nb_{x\cdot 2}O_{11\cdot x\cdot 2}$ (x=0.05-0.6).

Образцы синтезированы по стандартной керамической технологии в интервале температур от 500 до 800°С (ΔT =50°С). В качестве исходных реагентов использовали оксиды Bi_2O_3 , V_2O_5 , Fe_2O_3 , Nb_2O_5 . Все полученные образцы аттестованы методом РФА. Определены границы области гомогенности и концентрационные области существования структурных модификаций твердых растворов $Bi_4V_{2-x}Fe_{x/2}Nb_{x/2}O_{11-x/2}$. На основе порошковых рентгеновских данных определена структура и рассчитаны параметры элементарных ячеек твердых растворов.

Установлен размер частиц полученных образцов с помощью лазерного анализатора дисперсности. Средний размер частиц находится в пределах 0.5--50 мкм. Исследована электропроводность BI(FE,NB)VOX методом импедансной спектроскопии. Отмечены особенности температурных зависимостей электропроводности для различных структурных модификаций. Установлено, что наибольшей проводимостью среди изученных соединений обладают твердые растворы с суммарной концентрацией железа и ниобия x=0.3.

Определен размер частиц полученных порошков, изучены электрохимические свойства соединений как функции состава и температуры с использованием импедансной спектроскопии.

Магнитные свойства образцов исследованы методом магнитной восприимчивости в интервале температур 77 -300 К. Полученная зависимость магнитной восприимчивости от температуры для всех образцов показывает, что ее величина с увеличением температуры растет и не зависит от приложенного поля. Такая зависимость характерна для парамагнитных веществ, содержащих неспаренные электроны. Были рассчитаны параметры С, θ и A_0 , описывающие закон Кюри-Вейсса. Рассчитав из константы Кюри магнитный момент, приходящийся на одну формульную единицу, построили зависимость μ^2 от концентрации введенного допанта. Установлено, что с увеличением содержания Fe^{3+} в исследуемых образцах μ^2 увеличивается. Показано, что магнитный момент на Fe^{3+} во всех случаях составляет величину,

меньшую теоретического спинового значения, что может быть связано с возможными переходами иона железа в другое валентное состояние.

Работа выполнена при финансовой поддержке Федерального агентства по образованию.

ЭЛЕКТРОННАЯ СТРУКТУРА, СВОЙСТВА И ХИМИЧЕСКАЯ СВЯЗЬ ВОЛЬРАМСОДЕРЖАЩИХ АНТИПЕРОВСКИТОВ W₃NiC, W₃NiN, C₀3WC, Rh₃WC, Ir₃WC

Суетин Д.В., Шеин И.Р., Ивановский А.Л. Институт химии твердого тела УрО РАН 620990, г. Екатеринбург, ул. Первомайская, д. 91

Монокарбид вольфрама WC несет В себе уникальную комбинацию физико-химических свойств, таких как высокая температура плавления, исключительная твердость и износостойкость в температурном интервале, низкий коэффициент температурного расширения, что делает его достаточно интересным с фундаментальной точки зрения и крайне привлекательным для технических приложений. Сочетание WC и других переходных металлов приводит к появлению ряда перспективных материалов, при кристаллической соответствующие фазы могут обладать структурой WC или иметь собственную структуру и свойства.

Среди последней группы известно о существовании фаз, принадлежащих к классу перовскитоподобных карбидов, нитридов. Так, W_3NiN синтезирован путем разложения метастабильной фазы W_3Ni_2N [1]. Также предсказывается существование фаз Co_3WC , Rh_3WC [2].

В данной работе с использованием зонного метода FLAPW-GGA (код WIEN2k) были исследованы структурные, электронные, механические, когезионные свойства, энергетическая стабильность, химическая связь для перовскитоподобных фаз: синтезированного W_3 NiN, теоретически предсказанных Co_3WC , Rh_3WC и гипотетических W_3 NiC, Ir_3WC . Рассчитанные параметры для данных тройных систем анализируются в сравнении друг с другом, а также с базисным WC.

Получено, что все антиперовскитные фазы являются механически стабильными, а их модули всестороннего сжатия (B) уменьшаются в следующей последовательности: $B(W_3NiC) > B(W_3NiN) > B(Co_3WC) = B(Rh_3WC) = B(Ir_3WC)$. Кроме того, для всех них выполняется неравенство B>G, т.е. фактором, ограничивающим стабильность этих кристаллов, является модуль сдвига (G).

Энергии когезии всех антиперовскитов (E_{coh}) не превосходят по величине соответствующего значения для бинарного WC, максимальной