
46

УДК 004.81

Разработка искусственного интеллекта в видеоиграх

Сергей Сергеевич Иванов1, Елена Владиславовна Пономарева2

1, 2 Уральский федеральный университет

имени первого Президента России Б. Н. Ельцина, Екатеринбург, Россия

1 aeabr01@gmail.com

2 ev.ponomareva@urfu.ru

Аннотация. Статья посвящена теме разработки искусственного

интеллекта в видеоиграх. В статье рассматриваются основные технологии для

создания ИИ в видеоиграх. Автор дает краткий обзор применения технологий на

простом прототипе игры, а также сравнение этих методов.

Ключевые слова: искусственный интеллект, видеоигры, поведенческое

дерево, конечный автомат, ИИ на основе полезности.

AI Development in Video Games

Sergey S. Ivanov2, Elena V. Ponomareva2

1, 2 Ural Federal University named after the First President of Russia B. N. Yeltsin,

Ekaterinburg, Russia

1 aeabr01@gmail.com

2 ev.ponomareva@urfu.ru

Abstract. This paper is devoted to the development of artificial intelligence in

video games. The article examines the main technologies for creating AI in video

games. The author gives a brief overview of the technology application on a simple

game prototype, as well as a comparison of these methods.

mailto:aeabr01@gmail.com
mailto:ev.ponomareva@urfu.ru
mailto:aeabr01@gmail.com
mailto:ev.ponomareva@urfu.ru

47

Keywords: artificial intelligence, video games, behavior tree, finite state machine,

utility-based AI.

Introduction

The video game industry is one of the most perspective and popular areas in

entertainment. From the very beginning of the video games history people have tried

to create AI in games that could make the gameplay interesting and exciting. AI in

video games does not have to be smart and outplay the players easily, it should seem

smart and bring fun to the game. Video game developers have tried many techniques

and algorithms for creating AI, but there is still no answer to what techniques are most

suitable for different genres and whether it is possible to create a universal technique.

This paper examines different approaches for creating AI using the example of

the turn-based strategy genre. This genre assumes that the AI will not have an

advantage in reaction speed and accuracy, because the game is played by moves, so the

AI must confront the player with tactics and calculating the player's actions. However,

so far, the AI in games of this kind is significantly inferior to expert players, so to create

difficulty situations in a game, it is needed to scale up enemy’s damage or something

else. Two popular approaches will be tested and compared in context of simple turn-

based game prototype.

Background

In the modern world, the video game industry is developing very rapidly. Some

games can make more money than movies and other types of electronic entertainment.

Along with the demand for games, the quality bar is also growing, because it is not

enough for modern games to have a beautiful picture and a simple plot to please the

player. Modern players are already difficult to surprise, so game developers focus on

exciting and believable gameplay. Game AI plays a significant role in this.

Artificial intelligence in games serves various purposes, such as modeling

plausible NPC behavior, bringing fun to the game, creating some difficulties for the

player, randomly generating levels, and many others. The AI doesn't have to beat the

player, but rather make the gameplay enjoyable and fun, because of that many

48

traditional AI design techniques may be useless in the context of video games because

they focus on the result, such as winning, rather than the process.

Methods overview

The main algorithm for creating AI in old video games was finite state machine.

A finite state machine is an abstract machine that can exist in one of several different

and predefined states. A finite state machine can also define a set of conditions that

determine when the state should change. The actual state determines how the state

machine behaves. Finite state machines date back to the earliest days of computer game

programming. For example, the ghosts in Pac Man are finite state machines. They can

roam freely, chase the player, or evade the player. In each state they behave differently,

and their transitions are determined by the player’s actions. For example, if the player

eats a power pill, the ghosts’ state might change from chasing to evading. But the

complex and interesting AI in modern games cannot be implemented using this

algorithm. With a lot of parameters developers can simply get confused. It is very

difficult to expand FTM.

Today, the behavior tree is the leader in the field of game AI. This method was

used to design the behavior of NPCs in such popular games as Halo, Bioshock, and

Spore. The behavior tree is a graph that shows all possible actions of the AI and how

they can be reached. The behavior trees work like this: the first time they are evaluated

(or they are reset) they start from the root (parent nodes act like selectors) and each

child is evaluated from left to right. The child nodes are ordered based on their priority.

If all of a child node’s conditions are met, its behavior is started. When a node starts a

behavior, that node is set to ‘running’, and it returns the behavior. The next time the

tree is evaluated, it again checks the highest priority nodes, then, when it comes to a

‘running’ node, it knows to pick up where it left off. The node can have a sequence of

actions and conditions before reaching an end state. If any condition fails, the traversal

returns to the parent. The parent selector then moves on to the next priority child.

However, this approach is difficult to expand like the FTM approach. Nevertheless, it

is the most popular approach for the game AI.

49

The behavior tree is being replaced with the new approach called Utility AI. This

approach assigns some score to the actions of AI and then chooses the action that has

gained the biggest score. This method can help designing complex AI systems. This

approach can be easily expanded; it is used in many popular games such as Killzone 2

and Apex. The advantages of this method are:

• design simplicity– first, the designer can easily explain to the programmer what

needs to be done in a simple language, without any complex terms of states,

decorators and sequences.

• scalability – unlike a finite state machine or a behavior tree, rules can be freely

added on top of existing AI logic and no important connections or transitions will

be broken.

• financial benefit – as a result of the above points, the game will be developed faster

and with fewer errors, which will lead to an increase in profit.

• easy use – input parameters of the AI can be described using curves. The curves

enable the Utility AI to make decisions across a large spectrum of inputs and give

it a fuzzy-logic quality. In practice, the Utility AI can thus make rather good

decisions even in scenarios that the AI programmer has not foreseen. The ease-of-

use of the Utility AI is also extended into domains that are normally difficult to

handle for Behavior Trees.

Experimental setup

To compare these two approaches, a simple prototype of a turn-based game was

developed. The map of this game is presented in the form of a regular grid. A*

algorithm was used for pathfinding. This is one of the most popular algorithms for

finding the shortest path; it works quickly and can handle large maps. The example of

game field is shown in Figure 1. The rules of the game prototype are simple:

• The blue cell is an AI, the goal is to win the black cell (the player).

• The game is turn-based, so the player and the AI can do 2 actions during each of

their turns (attack and move).

• The player can move 4 squares, and the AI can only move 3 squares.

50

• The player has increased damage, but cannot use bonuses from the cells; this is

necessary for the balance because the AI can win the player with good decisions

and lose with bad.

• The green cells give the AI invulnerability to damage for 1 turn and disappear, then

reappear elsewhere.

• The red cells give the AI double damage and just like green cells disappear and

appear in another place.

Figure 1: Game Prototype (Regular Grid).

First, let's try to describe the actions of the AI using the behavior tree. The AI

must come to the green cell if the enemy is at an attacking distance and the green cell

is nearby, the AI must come to the red cell if it is in range and it still has the strike

action left. Priority is given to the red cells if the AI is ahead in health than the player

and to the green cells in the opposite cases. The AI should give preference to the path

where it can meet nearby (in the range of one step) green and red cells. The behavior

tree is shown in Figure 2.

51

Figure 2: Behavior Tree for game prototype.

As we can see, there are already quite a few nodes in the tree, although now it

does not look very confusing, adding new types of cells or actions to the game will

significantly increase the size of the tree, because behavior trees grow at a tremendous

speed.

Figure 3: Utility AI.

Now we will implement the case logic using Utility AI. The result is shown in

Figure 3. It is a table with good extensibility, to add another action or cell, we will only

need to add new entries to the table without deleting the old ones and not destroying

the connections, unlike the approach with the behavior tree, where we will have to

rebuild the tree almost entirely.

In the tests, both approaches showed good results and were able to beat the

player, but despite the same result in the tests, designing an AI based on the Utility is

much easier and more scalable.

52

Conclusion

The FTM method is well suited for implementing simple artificial intelligence

with a small number of actions. To implement a more complex AI, it is better to use a

behavior tree or Utility AI.

However, behavior tree is difficult to expand, so it is replaced by a new method

of implementing AI in video games – Utility AI. The Utility AI will perform the best

in complex behavior, group behavior, strategic planning and in expandable AI.

References

1. Xiao Cui , Hao Shi. Direction Oriented Pathfinding In Video Games. [Digital

resource]. — URL:

https://www.researchgate.net/publication/267405818_Direction_Oriented_Pathfindin

g_In_Video_Games (Reference date: 21.10.2021).

2. Antonio A. Sánchez-Ruiz, Ruiz Stephen, Lee-Urban Héctor, M Noz-Avila. Game

AI for a Turn-based Strategy Game with Plan Adaptation and Ontology-based retrieval.

[Digital resource]. — URL:

https://www.researchgate.net/publication/228752082_Game_AI_for_a_Turn-

based_Strategy_Game_with_Plan_Adaptation_and_Ontology-based_retrieval

(Reference date: 21.10.2021).

3. Boming Xia, Xiaozhen Ye, Adnan O.M Abuassba. Recent Research on AI in Games.

[Digital resource]. — URL:

https://www.researchgate.net/publication/343244745_Recent_Research_on_AI_in_G

ames. (Reference date: 21.10.2021).

4. Marek Kopel, Tomasz Hajas. Implementing AI for Non-player Characters in 3D

Video Games. [Digital resource]. — URL:

https://www.researchgate.net/publication/323162058_Implementing_AI_for_Non-

player_Characters_in_3D_Video_Games (Reference date: 21.10.2021).

5. Firas Safadi, Raphael Fonteneau, Damien Ernst. Artificial Intelligence in Video

Games: Towards a Unified Framework. [Digital resource]. — URL:

https://www.researchgate.net/publication/267405818_Direction_Oriented_Pathfinding_In_Video_Games
https://www.researchgate.net/publication/267405818_Direction_Oriented_Pathfinding_In_Video_Games
https://www.researchgate.net/publication/228752082_Game_AI_for_a_Turn-based_Strategy_Game_with_Plan_Adaptation_and_Ontology-based_retrieval
https://www.researchgate.net/publication/228752082_Game_AI_for_a_Turn-based_Strategy_Game_with_Plan_Adaptation_and_Ontology-based_retrieval
https://www.researchgate.net/publication/343244745_Recent_Research_on_AI_in_Games
https://www.researchgate.net/publication/343244745_Recent_Research_on_AI_in_Games
https://www.researchgate.net/publication/323162058_Implementing_AI_for_Non-player_Characters_in_3D_Video_Games
https://www.researchgate.net/publication/323162058_Implementing_AI_for_Non-player_Characters_in_3D_Video_Games

53

https://www.researchgate.net/publication/273894693_Artificial_Intelligence_in_Vide

o_Games_Towards_a_Unified_Framework (Reference date: 21.10.2021).

6. Ashwin Ram, Santiago Ontanon, Manish Mehta. Artificial Intelligence for Adaptive

Computer Games. [Digital resource]. — URL:

https://www.researchgate.net/publication/221439041_Artificial_Intelligence_for_Ad

aptive_Computer_Games (Reference date: 21.10.2021).

7. M Ranjitha, Kazaka Nathan, Lincy Joseph. Artificial Intelligence Algorithms and

Techniques in the computation of Player-Adaptive Games. [Digital resource]. — URL:

https://www.researchgate.net/publication/338353404_Artificial_Intelligence_Algorit

hms_and_Techniques_in_the_computation_of_Player-Adaptive_Games (Reference

date: 21.10.2021).

8. Niels Justesen , Philip Bontrager , Julian Togelius , Sebastian Risi. Deep Learning

for Video Game Playing. [Digital resource]. — URL:

https://www.researchgate.net/publication/319327551_Deep_Learning_for_Video_Ga

me_Playing (Reference date: 21.10.2021).

Информация об авторах

Иванов Сергей Сергеевич – cтудент студент кафедры Информационные

технологии и автоматик Институт радиоэлектроники и информационных

технологий Уральского федерального университета (Екатеринбург, Россия). E-

mail: aeabr01@gmail.com.

Пономарeва Елена Владиславовна - старший преподаватель кафедры

иностранных языков и перевода Уральского гуманитарного института

Уральского федерального университета (Екатеринбург, Россия). E-mail:

ev.ponomareva@urfu.ru.

https://www.researchgate.net/publication/273894693_Artificial_Intelligence_in_Video_Games_Towards_a_Unified_Framework
https://www.researchgate.net/publication/273894693_Artificial_Intelligence_in_Video_Games_Towards_a_Unified_Framework
https://www.researchgate.net/publication/221439041_Artificial_Intelligence_for_Adaptive_Computer_Games
https://www.researchgate.net/publication/221439041_Artificial_Intelligence_for_Adaptive_Computer_Games
https://www.researchgate.net/publication/338353404_Artificial_Intelligence_Algorithms_and_Techniques_in_the_computation_of_Player-Adaptive_Games
https://www.researchgate.net/publication/338353404_Artificial_Intelligence_Algorithms_and_Techniques_in_the_computation_of_Player-Adaptive_Games
https://www.researchgate.net/publication/319327551_Deep_Learning_for_Video_Game_Playing
https://www.researchgate.net/publication/319327551_Deep_Learning_for_Video_Game_Playing
mailto:aeabr01@gmail.com
mailto:ev.ponomareva@urfu.ru

