

Зависимость скорости нагрева от абсолютной температуры

Энергия активации горения коксовой пыли, рассчитанная по экспериментальным данным, снижается с увеличением степени конверсии и находится в интервале от 73,8 до 29.8 кДж моль (см. таблицу).

Зависимость энергии активации от степени конверсии

х, отн. ед.	0,1	0,2	0,5	0,7	0,9
E, кДж/моль	73,8	64,2	42,3	33,9	29,8

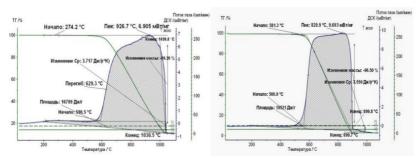
Полученные в работе данные по энергии активации позволили рассчитывать процесс горения коксовых частиц различной крупности в зависимости от температуры и времени пребывания в реакционной зоне.

О ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ КОКСА ИЗ ТВЕРДЫХ НЕФТЯНЫХ ОСТАТКОВ ДЛЯ ПЛАВКИ ЧУГУНА В ВАГРАНКАХ ПО ДАННЫМ СТА

Стахеев С.Г., Коробова М.Е. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Традиционно в ваграночных печах для плавки чугуна используется каменноугольный кокс, получаемый в горизонтальных коксовых печах. Однако в последнее время ряд нефтеперерабатывающих предприятий на действующих установках замедленного коксования (УЗК) организовали выпуск — «добавки коксующей» (ДК), отличающегося от нефтяного кокса (НК) повышенным до 15-18 % выходом летучих веществ. В 2014 году производство ДК составило более 800 млн. тонн.

Новый продукт используется как компонент угольных в шихтах при производстве кокса, так и коксуется индивидуально. Кокс, получен-


ный из ДК, отличается более высокой механической прочностью по сравнению с коксом из угольной шихты.

В настоящей работе экспериментально получены термические показатели каменноугольного кокса (КК) и кокса из "добавки коксующей" (КДК) при горении в воздухе и проведен их сравнительный анализ с целью оценки принципиальной возможности использования КДК в ваграночных печах.

Технический анализ КДК приведен в таблице. Испытания проводили на приборе синхронного термического анализа STA 449 F3 «Јиріter». Калибровку по температуре и чувствительности выполняли по металлам: индий, олово, висмут, цинк, алюминий, золото. Скорость нагрева образца $10\ ^{\circ}$ С/мин. Масса навески $20\text{-}25\ \text{мг}$.

Технический анализ кокса

Матариан	Технический анализ, %				
Материал	\mathbf{W}^{a}	A^{d}	V^{daf}	S	
Каменноугольный кокс (КК)	0,3	11,4	1,3	0,34	
Кокс из ДК (КДК)	0,5	0,7	1,0	4,20	

Результаты синхронного термического анализа КК (слева) и КДК (справа)

В результате проведения работы были установлены следующие отличия термических показателей КДК от КК.

Удельная теплота сгорания КДК выше на $\sim 10\%$. Температура пика эндотермического эффекта практически не изменяется, но температуры начала и конце экзотермического эффекта снижаются соответственно на ~ 30 и ~ 130 °C, то есть КДК характеризуется более высокой скоростью горения. О более высокой скорости горения свидетельствует, и сдвиг начала и конца убыли массы в область более низких температур (см. рисунок).

В результате проведенной работы установлено, что указанные выше различия между КК и ДК не являются принципиальными, и КДК может быть использован в вагранках для выплавки чугуна.

ВЛИЯНИЕ КОМПЛЕКСООБРАЗОВАНИЯ НА ОПТИЧЕСКИЕ СВОЙСТВА РАСТВОРОВ ЖЕЛЕЗА (III)

Иканина Е.В., Марков В.Ф. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Материалы с требуемым набором оптических свойств находят широкое применение в военной и гражданской промышленности. Перспективными для получения таких материалов являются соединения железа, характеризующиеся многообразием физико-химических свойств в зависимости от условий синтеза.

При гидрохимическом синтезе оптических материалов на основе железа важную роль играют процессы комплексообразования, так как благодаря электронной конфигурации $3d^6$ железо является активным комплексообразователем с координационным числом от 1 до 6. Прогнозировать процессы комплексообразования и управлять ими, целенаправленно изменяя состав и температуру раствора, позволяет математическое моделирование.

Нами разработана математическая модель для расчета ионных равновесий в растворах железа (III) с точностью $\varepsilon=0.005$, особенность которой – учет всех возможных реакций, а также ионов, обеспечивающих изменение pH раствора. С помощью модели выполнен расчет распределения железа (III) по ионным формам в растворах различного состава, и опытным путем исследовано влияние комплексообразования на оптические свойства растворов.

В качестве примера (см. рисунок) представлена распределительная диаграмма ионных форм железа (III) и оптическая плотность D в зависимости от pH 0.01 M раствора $Fe_2(SO_4)_3$.