ФАЗОВАЯ ДИАГРАММА СИСТЕМЫ УЬ-Ві2Те3

Максудова Т.Ф., Аждарова Д.С., Кули-заде Э.С., Рагимова В.М. Институт катализа и неорганической химии НАН Азербайджана 1143, г. Баку, пр. Г. Джавида, д. 113

Известно, что теллуриды висмута обладают интересными полупроводниковыми свойствами и являются термоэлектрическими материалами. Поэтому, изучение характера взаимодействия фазовых равновесий в тройной системе Yb-Bi-Te представляет не только научный, но и практический интерес. Проведенные ранее исследования системы YbTe-Bi₂Te₃ выявили образование тройных соединений состава: YbBi₂Te₄ и YbBi₄Te₇. Соединение YbBi₂Te₄ образуется по перитектической реакции # + YbTe#YbBi₂Te₄ при температуре 873К. Соединение YbBi₄Te₇ плавится конгруэнтно при температуре 923К.

Разрезы YbBi₂-Bi₂Te₃; Yb₄Bi₃-Bi₂Te₃; Yb₄Bi₃-YbTe; YbBi₄Te₇-Te; Yb₄Bi₃-YbBi₄Te₇ квазибинарные, диаграммы состояния их относятся к эвтектическому типу.

Для определения координат тройных нонвариантных точек, границ и изотерм в полях первичной кристаллизации фаз, а также нонвариантных кривых было исследовано неквазибинарное сечение Yb-Bi₂Te₃. Данные этого политермического сечения в дальнейшем были использованы для построения поверхности ликвидуса тройной системы Yb-Biфизико-химического Методами анализа: дифференциальнотермическим, рентгенофазовым, микроструктурным, а также измерением микротвердости и плотности был исследован неквазибинарный разрез Үb-Вi₂Те₃ тройной системы Yb-Вi-Те. Синтез образцов проводили ампульным методом. Образцы сплавляли в запаянных предварительно откаченных до остаточного давления 10 Па кварцевых ампулах при 900-1200 К. После сплавления проводили гомогенизирующий отжиг в течение 150-200 ч при 650-900 К в зависимости от и состава. Разрез Уь-Ві₂Те₃ неквазибинарный. Согласно триангуляции системы Yb-Bi-Te разрез пересекает подчиненные тройные системы Yb4Bi3-Yb-YbTe; Yb4Bi3-YbBi₄Te₇-YbTe; Yb₄Bi₃-Bi₂Te₃-YbBi₄Te₇, поэтому диаграмма его состоит из трех частей. В системе Yb₄Bi₃-Yb-YbTe имеют место эвтектическое и перитектическое равновесия. Ликвидус разреза в этой части диаграммы состоит из YbTe и Yb. Поле иттербия незначительное. В этой псевдотройной системе образование неустойчивых соединений Yb₃Bi₂ и Yb₅Bi₃ отражено изотермическими линиями при 1233 K твердевание сплавов в этом составном треугольнике происходит при

ную тройную систему Yb_4Bi_3 - $YbTe-YbBi_4Te_7$, где сплавы претерпевают эвтектические и перитектические превращения. Ликвидус этой части разреза состоит из трех кривых первичной кристаллизации фаз: YbTe; $YbBi_4Te_7$ и $YbBi_2Te_4$. Сплавы заканчивают кристаллизацию в тройной эвтектике при температуре 790 К. Ниже эвтектической горизонтали образцы состоят из трех фаз: YbTe; $YbBi_2Te_4$; $YbBi_4Te_7$. Третья часть системы пересекает вторичную тройную систему Yb_4Bi_3 - $YbBi_4Te_7$ - Bi_2Te_3 . Ликвидус этой части системы состоит из ветвей первичной кристаллизации $YbBi_4Te_7$ и α -твердых растворов на основе полуторного теллурида висмута, а эвтектическому превращению соответствует температура 743 К, ниже которой кристаллизуются фазы: $YbBi_4Te_7$; α -твердые растворы и Yb_4Bi_3 . Область гомогенности на основе Bi_2Te_3 составляет до 1 моль %.

Таким образом, можно заключить, что разрез Yb-Bi $_2$ Te $_3$ является неквазибинарным сечением тройной системы Yb-Bi-Te.

ФОРМИРОВАНИЕ И ИССЛЕДОВАНИЕ ПОКРЫТИЙ ТВЕРДОГО ЭЛЕКТРОЛИТА ТОТЭ МЕТОДОМ ЭЛЕКТРОФОРЕТИЧЕСКОГО ОСАЖДЕНИЯ ИЗ УСТОЙЧИВЫХ СУСПЕНЗИЙ НАНОПОРОШКОВ

Меньщикова А.В.⁽¹⁾, Калинина Е.Г.⁽²⁾, Пикалова Е.Ю.⁽³⁾

⁽¹⁾ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

⁽²⁾ Институт электрофизики УрО РАН 620016, г. Екатеринбург, ул. Амундсена, д. 106

⁽³⁾ Институт высокотемпературной электрохимии УрО РАН 620137, г. Екатеринбург, ул. Академическая, д. 20

Твердооксидные топливные элементы (ТОТЭ) являются наиболее перспективными альтернативными источниками энергии. К преимуществам ТОТЭ можно отнести, отсутствие необходимости использования дорогостоящего катализатора (платина), высокую степень преобразования энергии, возможность создания гибридных установок, работающих на теплоте от химической реакции и экологичность. Главный недостаток – высокая рабочая температура ТОТЭ. Снижение рабочей температуры (ниже 800°С) ТОТЭ позволит уменьшить деградацию отдельных компонентов топливного элемента, снизить производственные затраты. Однако, снижение рабочей температуры приведет к существенному увеличению омического сопротивления электролита и поляризации катодов. Для сохранения высоких мощностных показателей среднетемпературно-