Оптимальные температуры стадии пиролиза при отсутствии и в присутствии нитрата магния

Ана- лит	Т _{пир} наш эксперимент, °С			$T_{ m пир}$ по опубликованным данным, ${}^{ m o}{ m C}$		
	без Mg(NO ₃) ₂	с Mg(N экспе- римент	NO ₃) ₂ ТДМ	без Mg(NO ₃) ₂	c Mg(NO ₃) ₂	
Au	600	900	400	500 - 850	900	
Cd	250	600	400	250 - 500	600	
Cu	1000	1000	1000	800 - 1000	1100	
Ga	900	1000	900	400 – 900	1200	
In	800	1000	900	600 - 800	500 - 900	
Ni	1000	1300	1400	1000 - 1400	1200 - 1600	
Pb	500	800	700	500 – 760	900	
Zn	400	900	800	400 - 500	700 - 900	

Сопоставление рассчитанных теоретических и экспериментальных температур стадии пиролиза показывает удовлетворительное совпадение для многих аналитов. При прогнозировании температуры стадии пиролиза погрешность для большей части элементов, кроме Au и Cd, составляет менее 15 %, что допустимо для теоретической оценки. Необходимо расширить ряд аналитов для дальнейших исследований.

АТТЕСТАЦИЯ НИКЕЛЬСЕЛЕКТИВНЫХ ЭЛЕКТРОДОВ НА ОСНОВЕ НИОБАТОВ НИКЕЛЯ

Мальцева В.О., Заболотских Н.Н., Тимофеев А.Л., Подкорытов А.Л., Штин С.А. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Эколого-аналитический мониторинг окружающей среды является важным направлением современной аналитической химии. Ежегодно в мире увеличивается количество выбрасываемых в окружающую среду отходов, содержащих тяжелые металлы, пагубно влияющих на человеческий организм. Для контроля их содержания необходимы точные, надежные и недорогие методы анализа. Использование ионоселективных электродов (ИСЭ) удовлетворяет этим критериям и позволяет с достаточной чувствительностью и экспрессностью контролировать содержание тяжелых металлов в объектах окружающей среды, состав технологических растворов, сточных и природных вод.

В работе исследована возможность применения новых никельселективных электродов в потенциометрии.

Сконструированы пленочные Ni-CЭ на основе сложных оксидов (Ni₄Nb₂O₉, Ni₄Ta₂O₉, Pb_{3,9}Ni_{0,1}Nb₂O₉, Ni₄Nb_{3,9}Ta_{0,1}O₉ и Ni_{4-x}Bi_{2/3x}Nb₂O₉) с использованием в качестве полимерной матрицы поливинилхлорида, полистирола и полиметилметакрилата. Изучены основные электрохимические характеристики: область линейности и крутизна основной электродной функции, рабочая область pH, тип электродной функции и время отклика (см. таблицу 1). Методом смешанных растворов с постоянной концентрацией мешающего иона определены коэффициенты селективности_исследуемых электродов по отношению к некоторым ионам (см. таблицу 2).

Таблица 1 – Электрохимические характеристики Ni-CЭ

Состав мембраны	Полимерная матрица	Область ли- нейности, моль/дм ³	Крутизна электродной функции, мВ/рNi	Рабочая область рН
	ПВХ	$1.10^{-4} - 1.10^{-1}$	-27,9	2,1-4,0
$Ni_4Nb_2O_9$	ПММА	$1.10^{-4} - 1.10^{-1}$	-29,2	2,1 - 4,2
	ПС	$1.10^{-5} - 1.10^{-1}$	-28,3	2,3-4,0

Таблица 2 – Потенциометрические коэффициенты селективности

тавлица 2 потенциометри теские коэффициенты еслективности									
Матрица электрода	Коэффициенты селективности								
на основе Ni ₄ Nb ₂ O ₉	NH ₄ ⁺	Na ⁺	Zn ²⁺	Cu ²⁺	Pb ²⁺				
ПВХ	0,025	0,017	0,589	0,422	0,034				
ПММА	_	2,1·10 ⁻³	0,105	0,300	0,029				
ПС	0,157	_	0,660	0,026	0,033				

Для электродов с мембраной на основе состава $Ni_4Nb_2O_9$ с инертной матрицей из ПММА, ПВХ, ПС показана удовлетворительная сходимость и воспроизводимость основных электрохимических характеристик.