ТРИАНГУЛЯЦИЯ СИСТЕМЫ NaF – CaS – MgF₂

Кокшаров А.А., Кертман А.В. Тюменский государственный университет 625003, г. Тюмень, ул. Семакова, д. 10

Фторсульфидные смеси на основе щелочных и щелочноземельных металлов обладают практически значимыми физико-химическими свойствами, такими как, высокая электропроводность, термическая стабильность, что вызывает определенный интерес у исследователей. В настоящей работе при изучении фазовой диаграммы $NaF-CaS-MgF_2$ использована комплексная методология исследования многокомпонентных систем.

Граничными элементами трехкомпонентной системы $NaF-CaS-MgF_2$ являются системы $NaF-MgF_2$, NaF-CaS и $CaS-MgF_2$. Система $NaF-MgF_2$ характеризуется наличием конгруэнтно плавящегося соединения состава $NaMgF_3$, образующего с исходными фторидами NaF и MgF_2 эвтектики. Фаза $NaMgF_3$ образуется при эквимолярном соотношении исходных фторидов и кристаллизуется в ромбической сингонии с параметрами элементарной ячейки, a=0.536 нм, b=0.768 нм, c=0.550 нм. Фаза $NaMgF_3$ плавится при 1300 К. Состав эвтектик 78 мол. % NaF-22 мол. % MgF_2 , температура плавления 1090 К (e_1) и 36 мол. % NaF-64 мол. % MgF_2 , температура плавления 1260 К (e_2) . Области твердых растворов на основе исходных соединений не обнаружено.

Системы NaF – CaS и CaS – MgF₂ эвтектического типа с отсутствием фазообразования и заметной растворимости на основе исходных компонентов. Координаты эвтектик составляют 88 мол. % NaF – 12 мол. % CaS, $T_{\text{эвт.}}$ = 1072 K (e₃) и 15 мол. % CaS – 85 мол. % MgF₂, $T_{\text{эвт.}}$ = 1325 K (e₄), соответственно.

В системе NaF – CaS – MgF $_2$ существует еще одна квазибинарная система NaMgF $_3$ – CaS, которая разбивает вышеуказанную тройную систему на два фазовых единичных блока: NaF – CaS – NaMgF $_3$ и NaMgF $_3$ – CaS – MgF $_2$. Система NaMgF $_3$ – CaS эвтектического типа с координатами эвтектики 83 мол. % NaMgF $_3$ – 17 мол. % CaS, температура плавления 1008 К (e $_5$). Заметной растворимости на основе исходных компонентов в системе не обнаружено.

Исходя из координат эвтектической точки системы $NaMgF_3-CaS$, в тройной системе $NaF-CaS-MgF_2$ изучен политермический разрез AB (A: 83 мол. % NaF-17 мол. % CaS; B: 17 мол. % CaS-83 мол. % MgF_2) в поле кристаллизации сульфида кальция и определены координаты эвтектик E_1 (72 мол. % NaF-17 мол. % CaS-11 мол. % MgF_2 , $T_{пл}=936$ K) и E_2 (23 мол. % NaF-17 мол. % CaS-60 мол. % MgF_2 , $T_{пл}=955$ K), находящихся на плоскости разреза AB. Тройные эвтектические смеси в системе $NaF-CaS-MgF_2$ должны существовать ниже разреза AB на лучах, исходящих из координаты CaS и проходящих через эвтектические точки E_1 и E_2 , что является следующим этапом исследования фазовой диаграммы $NaF-CaS-MgF_2$, а анализ соотношений температур нонвариантных равновесий позволит сформировать древо кристаллизации исследуемой системы.