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In this paper, we aim to present a unified mathematical modeling and descrip-

tion of the kinetics of magnetic nanoparticles phase condensation (conducting

to the appearance of bulk elongated aggregates) under homogeneous perma-

nent or alternating magnetic field. For such case, the aggregate growth rate

usually takes the form dV/dt = G(V )(t), with V and t being the aggregate's

volume and time, respectively, (t)—the supersaturation of the nanoparticle

suspension, and with the function G(V ) depending on the precise configura-

tion of the applied field. The Liouville equation for the aggregate size distribu-

tion function is solved by the method of characteristics. The solution is

obtained in parametric form for an arbitrary function G(V), providing a general

framework for any type of the applied magnetic field. In the particular case of

low-frequency rotating magnetic field (G(V )~V2/3), an explicit expression of

the distribution function is obtained, while the dimensionless average

aggregate volume hVi is found by the method of moments allowing a complete

decoupling of the system of equations for the statistical moments hVni of the
distribution function. Numerical examples are provided for the cases of

permanent and low- or medium-frequency rotating fields. It is shown that in

all cases, the average volume hVi only slightly depends on the relative width of

the initial size distribution. Nevertheless, at any times, t > 0, the size distribu-

tion shows a significant spreading around the average value hVi, which

increases progressively with time and achieves a final plateau at long times.

This model can be helpful for several biomedical or environmental applica-

tions of magnetic nanoparticles in which the nanoparticle suspension

undergoes a field-induced phase condensation.
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1 | INTRODUCTION

Magnetic nanoparticles are gaining a growing interest as a versatile nanomaterial for biomedical and environmental
applications.1,2 In many of these applications, magnetic nanoparticles are subjected to aggregation induced by the
applied external magnetic field due to dipole–dipole interactions. Such aggregation is often treated as a condensation
phase transition or phase separation, where initially homogeneous colloid separates into a concentrated phase
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(usually present in form of needle-like aggregates) and a dilute phase representing a homogeneous suspending medium
for aggregates.3 The typical aggregation timescale has often to be compared with the characteristic timescales of the
given application. Kinetics of field-induced aggregation becomes therefore very important for a successful realization of
the application. Because various magnetic field configurations are used in different applications (permanent, oscillatory,
and rotating magnetic fields), it is very useful to find a unified description of the kinetics of nanoparticle aggregation
independent of the field configuration and applicable to both permanent and alternating magnetic fields. To the best of
our knowledge, such generalized theory of kinetics of field-induced aggregation (or phase condensation) does not exist.
Theoretical4–6 and computer7–9 models of the field-induced phase condensation and its kinetics have been mainly
developed for the permanent magnetic field. However, the kinetics of aggregation have never been treated for the
practically important case of rotating magnetic field, which makes the aggregates rotate10,11; this is expected to change
dramatically the law of the aggregate growth. In particular, in a recently proposed novel treatment of brain strokes and
thrombosis, the magnetic nanoparticles are injected to the blocked vessel to activate recirculation of the blood flow near
the blood clots. Its goal is to enhance the drug transport to the clot allowing its faster dissolution.12 This recirculation is
achieved by the application of rotating magnetic fields, which first induce aggregation of nanoparticles to micron-sized
needle-like aggregates. Then the rotational motion of these aggregates induces recirculation flows in the blood vessel.
When the applied field is switched off, the nanoparticle aggregates are destroyed by thermal motion and convective
fluxes, and biocompatible nanoparticles are slowly eliminated from the human body by liver macrophages.13 The same
mechanism is involved in the elimination of magnetic nanoparticles applied as contrast agents in magnetic resonance
imaging.14 The timescale of field-induced aggregation should be much smaller than the typical time of the medical
intervention. In this context, the kinetics of nanoparticle aggregation under rotating magnetic fields plays a decisive role
in the success of brain stroke treatment.

This paper is focused on the development of the unified mathematical modeling of the kinetics of field-induced phase
condensation in ferrfoluids under a spatially homogeneous permanent or alternating magnetic field of an arbitrary config-
uration (harmonic or nonharmonic oscillatory, rotating with circular or noncircular polarization, etc.). This description is
given under two following limits: (a) very fast initial nucleation stage allowing the appearance of all the nuclei at very
small times; (b) the aggregation timescale is large enough with respect to the characteristic period of the magnetic field.
Under these limits, the unified modeling of the kinetics becomes possible because, in most of the relevant cases, the aggre-
gate growth rate dV/dt can be presented as a product of some function G(V) of the aggregate volume by another function
Δ(t) of time. The precise details of the aggregation mechanism are contained in the function G(V), which depends on the
magnetic field configuration, while the second function Δ(t) stands for the suspension supersaturation. For definiteness,
two distinct cases of the permanent (with G(V) / V3/7) and rotating (with G(V) / V2/3) magnetic fields will be considered.
The distribution function of the aggregate volume, as well as evolution of the average volume with time, will be calculated
for these two particular cases as well as for a general case of an arbitrary function G(V).

2 | LIOUVILLE EQUATION SOLUTION FOR ARBITRARY FUNCTION G(V)

In this section, we propose a mathematical model of the evolution of the dense aggregates, consisting of many magnetic
nanoparticles, under a homogeneous permanent or homogeneous alternating magnetic field. The intensity of these
magnetic fields may be an arbitrary function of time, under the restriction that the period of the lowest harmonics of
the magnetic field is much smaller than the aggregation timescale. In many experiments, straight elongated aggregates
with a shape assimilated to prolate ellipsoids have been reported under permanent,3 rotating10 or oscillating15 magnetic
fields, at least in a low-frequency range below a critical frequency at which the straight elongated shape becomes
unstable.16 Thus, we consider dense-elongated aggregates that, depending on the magnetic field configuration, can
either be stationary or perform an angular motion (rotation as an example) under the action of this field. The aggregates
are illustrated in Figure 1.

All real magnetic colloids (ferrofluids) are polydisperse systems, very often with a wide distribution over particles
sizes. As a rule, they include small particles, not able to aggregate under the magnetic forces, as well as relatively large
particles with the energy of magnetic interaction large enough to provoke their aggregation in external magnetic field.
Here, we suppose that the aggregates appear and grow because of adsorbtion of small nanoparticles on the surface of
the large particles.

To prevent irreversible coagulation of the particles under the colloidal attractive forces, they are covered with special
surfactant or ionic layers. However, these layers do not always completely screen the colloidal attractive forces and the
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particles, at the stage of the ferrofluid synthesis, form some so-called primary agglomerates (sometimes called flocculi),
consisting of several or several tens of nanoparticles. That is why, the onset of the ferrofluid aggregation is determined
by many factors—by the size distribution of the particles, the presence of the primary agglomerates, etc. The biggest
particles or the biggest primary agglomerates can serve as centers of the heterogeneous nucleation of the main part of
the particles. The rate of the primary nuclei appearance can be very high; the characteristic time of the nucleation is
usually below the ability of detection of the process.17 Therefore, the most probable scenario of the kinetics of the phase
separation is the following. Once the external magnetic field is applied, for practically negligible time, the nuclei of the
dense phase appear on some condensation centres. After that, because of the magnetic interparticle interaction, the
nuclei absorb the free particles from the main part of the ferrofluid and grow; supersaturation of the system decreases.
These growing nuclei will be hereinafter called aggregates. At the final stage of the phase condensation, the aggregates
amalgamate because of magnetic interaction between them.

In this work, we will consider the main second part of the phase condensation, when the aggregates grow due to
capture of free nanoparticles from the surrounding dilute phase. New nuclei no longer appear during this stage, while
the coalescence of aggregates under attractive dipolar interaction is still negligible,17 such that the number of aggregates
N per unit volume will be considered to be constant with time. Because of the size polydispersity of the nucleation
centres, the aggregates are expected to have unequal size. It is convenient to describe the aggregate size distribution at a
given moment of time t by a distribution function (probability density) F(V,t) over the aggregate volumes V. After the
very fast nucleation stage, the aggregate size usually achieves a few microns. The effect of thermal fluctuations on the
rate of volume growth is expected to be negligible for such supercritical aggregates. That is why, as commonly admitted
in the theory of phase transitions, the distribution function F(V,t) of the aggregate size obeys the classical Liouville
equation free of any diffusive terms18:

∂F
∂t

+
∂

∂V
_VF
� �

=0, _V � dV
dt

ð1Þ

with the normalization condition

ð∞
0
F V , tð ÞdV =1, ð2Þ

and the initial condition

F V ,0ð Þ=F0 Vð Þ, ð3Þ

FIGURE 1 Sketch of the aggregates, which can either be

stationary or perform an angular motion depending on the applied

magnetic field. Dots around the aggregates stand for individual

magnetic particles
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relevant for the considered case of constant number density N of aggregates with the initial size distribution F0(V) in
the issue of very short heterogeneous nucleation stage. In the present work, this initial distribution is supposed to be
known, while in practice, it can either be measured in experiments or modeled through a detailed consideration of the
heterogeneous nucleation stage.

The aggregate growth rate dV/dt depends on both the aggregate volume V and time t. However, in most physically
relevant cases, separation of variables takes place, and the function dV/dt takes the following general form:

_V V , tð Þ=G Vð ÞΔ tð Þ, ð4Þ

where Δ(t) = φ(t) − φ' is the ferrofluid supersaturation, φ(t) is the mean volume concentration of the free particles in
the inter-aggregate space (in the dilute phase), and φ' is the concentration of the nanoparticles in the dilute phase when
the equilibrium between the dilute and concentrated (inside the aggregate) phases is achieved. The function G(V)
depends on the intensity, frequency, and shape of the temporal dependency of the magnetic field. For example, in the
case of the permanent magnetic field, G(V) / V3/7,19 while in the case of the circularly polarized rotating field,
G(V) / V2/3 at low frequency and can show an intermediate behavior between V3/7 and V2/3 at higher frequencies, as
shown in the Appendix A.

The size distribution must also respect the volume conservation condition that can be written in terms of the
supersaturation as follows19:

tð Þ= 0−Nφi Vh i, ð5Þ

Vh i=
ð∞
0
F V , tð ÞVdV , ð6Þ

where φi is the volume fraction of nanoparticles inside the aggregates and hVi is the average aggregate volume at a
given time t.

Equation (5) allows us to determine the maximal average volume of the aggregates at the end of the aggregate
growth stage when the supersaturation tends to zero: hVimax = 0/(Nφi). It is thus reasonable to scale the aggregate
volume by the maximal average volume and introduce the dimensionless aggregate volume as v = V/hVimax.
Furthermore, the function G(V) has a dimension of the aggregate growth rate (m3/s) and can be presented as

G Vð Þ� κ Vh imaxg vð Þ,

with κ being some kinetic constant having a dimension of inverse time (s−1) and g(v)—a function of the dimensionless
volume v that can in principle depend on hVimax. With this in mind, let us introduce the following dimensionless quan-
tities: f = hVimaxF—the dimensionless distribution function; τ = Δ0κt—the dimensionless time; and ω = Δ/Δ0—the
reduced supersaturation. The initial value problem (1–6 for the aggregate size distribution can now be written in the
following dimensionless form:

∂f
∂τ

+ω τð Þ ∂

∂v
g vð Þfð Þ=0, ð7Þ

ð∞
0
f v,τð Þdv=1, ð8Þ

f v,0ð Þ= f 0 vð Þ, ð9Þ

ω τð Þ=1− vh i=1−
ð∞
0
f v,τð Þvdv: ð10Þ

Introducing new functions:
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U v,τð Þ= g vð Þf v,τð Þ, ð11Þ

θ τð Þ=
ðτ
0
ω τ0ð Þdτ0, ð12Þ

y vð Þ=
ðv
0

dv0

g v0ð Þ , ð13Þ

we come to the problem with the initial condition as follows:

∂U
∂θ

+
∂U
∂y

=0, U y,0ð Þ= g v yð Þð Þ f 0 v yð Þð Þ, ð14Þ

where v(y) is the inverse function of y(v) defined in 13.
By using the methods of characteristics, one can get the solution of the initial value problem 14 as

U y,θð Þ= g v y−θð Þð Þ f 0 v y−θð Þð ÞH y−θð Þ, ð15Þ

where H(x) is the Heaviside step function, introduced to avoid negative values of the argument (dimensionless volume)
of the initial size distribution f0(v). Let us denote v(y − θ) = v*(y, θ). Since v(y) is the inverse function of y(v), then
v(y − θ) is expected to be an inverse function of y(v) − θ(τ). This implies y(v*) = y(v) − θ(τ). Using the definition of y
(Equation 13), we get,

θ=
ðv
v*

dv0

g v0ð Þ! v* = function θ,vð Þ: ð16Þ

With this new notation, the distribution function takes the following form in coordinates (v, θ):

f v,θð Þ= 1
g vð ÞU v,θð Þ= 1

g vð Þg v* v,θð Þ� �
f 0 v* v,θð Þ� �

H v* v,θð Þ� �
, ð17Þ

where v*(v, θ) is the solution of Equation 16. From the solution 17, it follows that at a given equivalent time θ, the
dimensionless volume v has a minimal nonzero value vmin defined by the condition v*(vmin, θ) = 0. Substituting this
expression to Equation 16, we get the following transcendental equation allowing finding the minimal volume as a
function of θ:

θ=
ðvmin

0

dv0

g v0ð Þ! vmin = function θð Þ: ð18Þ

Before finding θ(τ), let us first find the average aggregate volume as a function of the unknown θ:

vh i=
ð∞
0
f v,θð Þvdv=

ð∞
vmin θð Þ

g v* v,θð Þð Þ f 0 v* v,θð Þð Þ
g vð Þ vdv= function θð Þ: ð19Þ

Then we use the volume conservation condition 10, ω(τ) = dθ/dτ = 1 − hVi, whose solution is trivial:

τ θð Þ=
ðθ
0

dθ0

1− vh i θ0ð Þ : ð20Þ
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Thus, the average volume and the distribution function can be found in the function of time in parametric form by
variation of the parameter θ. The main steps of such parametric calculation are summarized as follows:

1. First, we find the minimal volume vmin(θ) by solving the transcendental equation 18;
2. then, we find v*(v, θ) by solving the transcendental Equation 16;
3. then we find the average volume hVi(θ) and time τ(θ) by Equations 19 and 20;
4. finally, with the help of Equation 17, we plot the distribution function f(v, θ) as a function of v at different moments

of time τ(θ).

This procedure can be applied to an arbitrary function g(v) depending on the magnetic field configuration. In the next
two sections, we focus our attention on a specific form of the function g(v) = v2/3, relevant for rotating magnetic field
and allowing more concise analytical solution for f(v, θ) and τ(θ) (Section 3) and finding the average volume hVi by the
method of moments without solving the Liouville equation (Section 4).

3 | RESOLUTION OF THE LIOUVILLE EQUATION FOR THE PARTICULAR
CASE G(V) = V2 /3

The particular case g(v) = v2/3 corresponds to the circularly polarized rotating magnetic field (see Appendix A) and is
important for the application of magnetic nanoparticles in magnetically assisted brain stroke treatment, as pointed out
in Section 1. This case allows rather simple expressions for all unknown quantities, such as vmin, v

*, θ, and f(v, θ).
Straightforward application of the calculation steps described at the end of Section 2 gives the following results:

vmin =
θ

3

� �3

, ð21Þ

v* = v1=3−
θ

3

� �3

, ð22Þ

vh i=
ð∞
vmin θð Þ

v*
2=3

f 0 v*
� �

v1=3dv=3
ð∞
0
ξ2 f 0 ξ3

� �
ξ+

θ

3

� �3

dξ=A+Bθ+Cθ2 +Dθ3, ð23Þ

τ θð Þ=
ðθ
0

dθ0

1− A+Bθ0 +Cθ02 +Dθ03½ � , ð24Þ

f v,θð Þ= v−2=3 v1=3−
θ

3

� �2

f 0 v1=3−
θ

3

� �3
 !

H v1=3−
θ

3

� �
, ð25Þ

A=3
ð∞
0
ξ5 f 0 ξ3

� �
dξ;B=3

ð∞
0
ξ4 f 0 ξ3

� �
dξ;C=

ð∞
0
ξ3 f 0 ξ3

� �
dξ;D=

1
9

ð∞
0
ξ2 f 0 ξ3

� �
dξ, ð26Þ

where we have made a change of variables ξ ≡ v*1/3 = v1/3 − θ/3 when calculating the integral in 23. The integral in
24 can be evaluated numerically, while the numerical values of the coefficients A, B, C, and D in (26 will depend on the
shape of the initial size distribution f0(v). Numerical examples will be analyzed in Section 5.

The analysis shows that in the particular case of the Dirac delta initial distribution of the aggregate size
f0(v) = δ(v − v0), that is, all aggregates of the same initial volume v0, the size distribution remains monodisperse at any
moment of time τ or θ:

f v,θð Þ= δ v−v1ð Þ, ð27Þ

with the aggregate volume v1 (the same for all aggregates) and the dimensionless time τ given by
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v1 = v0
1=3 +

θ

3

� �3

;τ θð Þ=
ðθ
0

dθ0

1− v01=3 + θ0=3ð Þ3
, ð28Þ

or, eliminating θ from (28, we get the following explicit expression for the dimensionless time as function of the
aggregate volume in this particular case of monodisperse size distribution:

τ v1ð Þ=
ðv1
v0

dv

v
2
3 1−vð Þ =ψ v1ð Þ−ψ v0ð Þ;ψ xð Þ=3

1
2atan

1+ 2x
1
3

3
1
2

+
1
2
ln
1+ x

1
3 + x

2
3

1−x
1
3

� �2 : ð29Þ

The case of monodisperse aggregate size will be compared with the case of the polydisperse size distribution
(with some initial distribution f0(v) 6¼ δ(v − v0)) in Section 5.

4 | METHOD OF MOMENTS FOR DETERMINATION OF THE AVERAGE
VOLUME IN PARTICULAR CASE G(V) = V2/3

In this section, we show that the special case g(v) = v2/3 admits a complete decoupling of the moments
vnh i= Ð∞0 vnf vð Þdv, n= 1

3,
2
3 ,1 of the distribution function f(v, τ) without any closure approximation. Thus, we do not

need to solve the Liouville Equation 7 for the distribution function to find the average volume hVi. Such decoupling of
moments is of particular interest for statistical physics and can generally provide faster computations as compared with
the general method provided in Section 3.

First, in the considered case, g(v) = v2/3, the Liouville Equation 7 written in dimensionless variables takes the fol-
lowing form:

∂f
∂τ

+ω τð Þ ∂

∂v
v
2
3f

� �
=0: ð30Þ

Then, multiplying both parts of Equation (30 by v and integrating over v, one gets

d< v>
dτ

+ω

ð∞
0
v
∂

∂v
v2=3f
� �

dv=0:

Integrating by parts, taking into account that f = 0 at v = 0, v ! ∞, we come to the equation:

d vh i
dτ

=ω< v2=3 > : ð31Þ

Similarly, multiplying Equation (30 by v2/3 and by v1/3, and integrating over v, we get respectively

d v2=3
� 	
dτ

=
2
3
ω< v1=3 > , ð32Þ

d< v1=3 >
dτ

=
1
3
ω: ð33Þ

Along with the volume conservation Equation 10, implying ω(τ) = 1 − hVi, Equations 31–33 present a closed system of
differential equations with respect to the moments <v > , < v2/3 > , < v1/3>. Eliminating the moments <v2/3> and
<v>, we arrive at a single differential equation as follows for the moment <v1/3>:
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d< v1=3 >
dτ

=
1
3

1− <v1=3 > 3 + 3C1 < v1=3 > +C2

� �h i
, ð34Þ

where the integration constants C1 and C2 are found from the initial size distribution f0(v) as follows:

C1 = v2=3
D E

0
− v1=3
D E

0

� �2
, C2 = vh i0 + 2 v1=3

D E
0

� �3
−3 v2=3
D E

0
v1=3
D E

0
, ð35Þ

with vnh i0 =
Ð∞
0 vn f 0 vð Þdv, n= 1

3,
2
3 ,1:

The differential Equation 33 allows expressing the moment <v1/3> as an inverse function of the dimensionless time
τ, while systems 31–33 allow one to relate the average volume <v> to <v1/3>. Thus, the time dependence of the average
volume can be written in the following parametric form using <v1/3 > ≡ x as a parameter:

< v> xð Þ= x3 + 3C1x+C2, ð36Þ

τ xð Þ=3
ðx
x0

dx0

1− x03 + 3C1x0 +C2ð Þ ,x0 = v1=3
D E

0
: ð37Þ

It can be easily checked, that in particular case of monodisperse initial size distribution, f0(v) = δ(v − v0), the con-
stants C1 = C2 = 0, the size distribution remains monodisperse with time and given by Equation 27, while the aggregate
volume v1 (the same for all aggregates) is given by the inverse function of time provided in Equation (29.

5 | RESULTS

For the sake of the definiteness, we apply our models developed in Sections 2–4 to the physically relevant case of initial
log-normal distribution of aggregate sizes:

f 0 vð Þ= 1ffiffiffiffiffi
2π

p
σv

exp −
ln v

vh i0

� �
+ σ2

2

� �2
2σ2

0
B@

1
CAH vð Þ, ð38Þ

where hVi0 is the initial dimensionless average aggregate volume and σ is a parameter characterizing the distribution
width.

Let us first analyze the evolution of the dimensionless average aggregate volume hVi with dimensionless time τ for
the three following cases:

a. a permanent magnetic field with g(v) = v3/7 (as shown in Ezzaier et al.17 and Zubarev and Ivanov19)—the case
labeled as “P”;

b. low frequency circularly polarized rotating magnetic field with g(v) = v2/3 (see Appendix A)—the case labeled
as “R1”;

c. moderate frequency circularly polarized magnetic field with

g vð Þ= av−2=3 + bv−3=7
h i−1

,

where a and b—dimensionless constants (see Appendix A)—the case labeled as “R2”.
All cases are treated using the general methodology developed at the end of Section 2; while it is checked that for

the case R1 (g(v) = v2/3), the calculations using this methodology (applied in Section 3 for this case) and the method of
moments (developed in Section 4) coincide. The hVi versus τ dependency is plotted in Figure 2 for the three cases with
the initial log-normal size distribution (Equation (38) characterized by hVi0 = 0.1 and σ = 1.5. The case R2 is calculated
at a = b = 1.
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As is seen from this figure, the average aggregate volume gradually increases with time from its initial value
hVi0 = 0.1 and asymptotically tends to unity at long times. Recalling that the dimensional volume V has been normal-
ized by the maximal average volume, hVimax = 0/(Nφi), this means that at long times, the average dimensional volume
V tends to its maximal value when the ferrofluid supersaturation Δ (or ω) tends to zero. We have to bear in mind that
the coalescence of aggregates has been neglected at this stage, and in fact, our preliminary experiments show that coa-
lescence is strongly hindered by hydrodynamic repulsion between aggregates in the case of rotating magnetic field,
which makes the aggregate turn synchronously with the field. Analyzing the difference between the three plotted cur-
ves in Figure 2, one could presume that the permanent magnetic field (curve “P”) provides a faster aggregation than
the rotating one, while low-frequency rotating field (curve “R1”) ensures faster aggregation than medium-frequency
rotating field (curve “R2”). We have to bear in mind however that the kinetic constant κ (introduced below Equation (5)
can be essentially different for three considered cases implying different dimensional times t = τ/(Δ0κ) at the same
dimensionless time τ. For example, in a permanent magnetic field, the kinetic constant is related to the inverse charac-
teristic time of Brownian diffusion of a single nanoparticle. On the other hand, in a rotating field, the kinetic constant
is expected to be a function of the field frequency, while the convective transport of nanoparticles towards the aggregate
is expected to be enhanced with increasing frequency leading to faster aggregation at a higher frequency. At this stage,
we restrict our analysis to the dimensionless quantities and focus our attention to a general theoretical description of
the solution of the kinetic problem. A deeper insight into the physical aspects related to precise dependence of the
kinetic constant on the dimensional physical parameters (as magnetic field intensity, frequency, particle size, etc.) will
be provided in future in comparison with experiments.

Let us now inspect the effect of the width σ of the initial size distribution (Equation (38) on the average volume.
The hVi versus τ dependency is plotted in Figure 3 for the case R1 (g(v) = v2/3) for hVi0 = 0.1 and three different values
of σ, with σ = 0 corresponding to the Dirac delta initial distribution admitting the analytical solution Equation (29.

As is seen from this figure, the curves are shifted to the right with increasing the initial distribution width
(σ parameter), indicating that the aggregation gets slower. However, the difference with the monodisperse distribu-
tion (Dirac delta with σ = 0) remains really small even at a very wide initial distribution with σ = 2. Such a dif-
ference can be on the order of errors related to different model assumptions, and it seems reasonable to use
simple analytical result (Equation (29) (derived for monodisperse distribution) for the average aggregate volume
even in the case of wide initial size distribution.

Having found a slight effect of the initial distribution width, it is now interesting to inspect what happens with the
size distribution with time. The distribution function f(v) of the dimensionless aggregate volume is plotted in Figure 4
for the R1 case with hVi0 = 0.1, σ = 1.5, and three different dimensionless times, including the initial moment τ = 0
with a given initial distribution f0(v) (Equation (38) and the moment of time τ = 8.4 at which the average aggregate
volume is equal to hVi = 0.999 (thus approaches its maximal value hVimax = 1).

It is seen from Figure 4 that the size distribution displaces along the abscissa axis and spreads over this axis during
time although the average volume remains close to the one of the monodisperse distribution. One can, therefore,
conclude that the distribution globally keeps its initial shape and nearly equally spreads around its average value
roughly given by the monodisperse approximation (Equation (29).

FIGURE 2 Dimensionless average aggregate volume hvi as
function of dimensionless time τ for three different functions

g(v) and initial log-normal size distribution with hvi0 = 0.1 and

σ = 1.5. The case R2 is calculated for a = b = 1 [Colour figure can be

viewed at wileyonlinelibrary.com]
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For the practical biomedical applications, the whole size distribution (and not only the average aggregate volume)
could appear to be an important parameter. For example, in brain stroke treatments, the largest aggregates can achieve
the size of the vessels, and the smallest aggregates can be too small for effective manipulation by external fields. It was,
therefore, important to learn about relatively large width of the aggregate size distribution (Figure 4) even in the case
when the average aggregate volume was nearly independent of the width of initial distribution (Figure 3).

6 | CONCLUDING REMARKS

In this paper, we present a mathematical model of nanoparticle phase condensation (or, equivalently, nanoparticle
aggregation) under homogeneous permanent or homogeneous alternating magnetic field with arbitrary time depen-
dence of the magnetic field intensity. The model is derived under basic assumptions of very fast nucleation kinetics but
negligible aggregate coalescence (thus, the aggregate number density is constant over time) and for the magnetic field
frequency range respecting two following conditions: (a) The aggregate growth is slow enough with respect to the field
variation, and (b) the aggregates keep their straight elongated shape. Under these conditions, the aggregate growth rate
takes the general form dV/dt = G(V)(t), with the function G(V) depending on the precise configuration of the applied
magnetic field. The ensemble of aggregates is described by their size distribution function F(V,t), which is found by the
solution of the Liouville Equation (1 at an appropriate initial condition. The problem is solved by the method of charac-
teristics, and the solution is obtained in parametric form for an arbitrary function G(V), providing a general framework
for any type of the applied magnetic field. In its dimensionless form, the solution is expressed through the integrals,
whose integrands contain the dimensionless counterparts, g(v) and f0(v), of the function G(V) and the initial size

FIGURE 4 Aggregate size distribution for the R1 case with

hvi0 = 0.1, σ = 1.5 and at the dimensionless times τ, covering the

whole range of the average volume hvi0 ≤ hvi ≾ 1 [Colour figure can

be viewed at wileyonlinelibrary.com]

FIGURE 3 Dimensionless average aggregate volume hvi as
function of dimensionless time τ for the R1 case and initial

log-normal size distribution with hvi0 = 0.1 and three different

values σ of the distribution width [Colour figure can be viewed at

wileyonlinelibrary.com]
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distribution F0(V), respectively. In the particular case of low-frequency rotating magnetic field (g(v) = v2/3), an explicit
expression of the dimensionless distribution function f(v, θ) is obtained (Equation 25), while the dimensionless average
aggregate volume hVi is easily found by the method of moments allowing a complete decoupling of the statistical
moments vnh i,n= 1

3 ,
2
3 ,1, without the necessity to solve the Liouville equation.

Numerical examples are provided for initial log-normal size distribution and the cases of a permanent magnetic
field (g(v) = v3/7), low-frequency rotating field (g(v) = v2/3), and medium-frequency rotating field (with intermediate
behavior between v3/7 and v2/3). All these cases share the following common features: (a) at long times, the average
volume asymptotically tends to its maximal value hVimax = 0/(Nφi) (or, hVimax = 1 in the dimensionless form) when
the ferrofluid supersaturation (or ω) tends to zero; (b) the average volume depends only slightly on the relative width σ
of the initial size distribution, allowing one to evaluate hVi for any σ (within the range 0 ≤ σ ≤ 2) using the explicit
expression (Equation (29) derived for the Dirac delta distribution; (c) despite a negligible dependence of the average
volume on σ, the width of the size distribution at any moment τ > 0 strongly depends on σ; the size distribution shifts
along the abscissa axis with time and shows a significant spreading around the average value hVi; however, this spread-
ing seems to be quasi-symmetric with respect to hVi, such that the average volume appears to be slightly affected by the
width of the initial distribution. The three considered cases show some difference when the average dimensionless
volume hVi is plotted against the dimensionless time τ, however, this tendency can change if the analysis is conducted
in dimensional quantities because the kinetic constant κ (which intervenes into the normalization of the dimensional
time t) depends on the physics behind each particular case (permanent or rotating magnetic field). A deeper insight into
this problem will be presented in future in conjunction with the comparison with experiments.

From the practical perspective, it was important to learn about relatively large width of the aggregate size distribu-
tion (Figure 4) even in the case when the average aggregate volume was nearly independent of the width of initial
distribution (Figure 3). In fact, the presence of too small or too large aggregates can be undesirable in biomedical or
environmental applications of magnetic nanoparticles, for example, in brain stroke treatment. Thus, the mathematical
model of aggregation kinetics presented in this work can provide useful feedback to a given application allowing opti-
mization of operating parameters.
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APPENDIX A.: THE RATE OF THE AGGREGATE GROWTH IN A ROTATING FIELD

In this appendix, we derive a scaling law of the aggregate growth rate _V (the increase of its volume by unit time) as a
function of the aggregate volume. At this stage, we are not looking for the exact expression for this rate, as long as it
does not affect the mathematical structure of the kinetic Equation 7 considered in Section 2 and the complex physics of
the aggregate growth only affects the kinetic constant κ in the scaling law dV/dt = function(V). We consider a dense
aggregate, of a length L and diameter da consisting of many ferromagnetic nanoparticles, elongated by the applied rotat-
ing field and synchronously spinning with this field. The angular frequency of the rotating field is denoted by Ω. These
aggregates are illustrated in Figure 1. We denote φi = O(1) – the volume fraction of nanoparticles inside the aggregates.
Kinetics of the aggregate growth is described by the following approximate balance equation:

φi
_V = J , ðA1Þ

where J is the flux of the particles towards the aggregate.
The magnetophoretic flux arising due to magnetic attraction of individual nanoparticles to strongly elongated aggre-

gates has been found to be negligible in comparison to the diffusive flux,17,19 while the typical ratio of the convective to
the diffusive flux, at the distances comparable with the aggregate diameter da, is estimated through the Péclet number:
Pe = LΩda/D, where D is the Brownian diffusivity of a single nanoparticle. Estimates show that for individual
nanoparticles of typical size ~20 nm and the typical aggregates with a diameter da~1 − 10μm and length L~100μm
suspended in water under the action of the field rotating with the frequency Ω~10s−1, the strong inequality Pe> > 1
holds. At such condition, the surface density of the diffusive flux on the aggregate surface can be evaluated using the
boundary layer approach20:
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jD �DΔ=δ; δ� daPe
−1=3: ðA2Þ

Here, Δ is the ferrofluid supersaturation (see Section 2), and δ is the thickness of the diffusion boundary layer near
the aggregate surface. According to the concept of the boundary layer approach, outside this layer, the convective flux
dominates over the diffusion one; while the diffusion flux dominates inside the layer. Integrating the flux density
(Equation 40) over the aggregate surface, one gets the following scaling for the particle flux (and consequently aggregate
growth rate):

_V � J �DLPe1=3Δ: ðA3Þ

The aggregate length and diameter are related to its volume by the following scaling17,19:

L/V
3
7 andda/V

2
7: ðA4Þ

Combining Equations 41 and 42, with the definition of the Péclet number, we arrive at the following scaling
relationship for the aggregate growth rate:

_V /V
2
3Δ tð Þ, ðA5Þ

where a dimensional multiplier before V2/3Δ depends on the field frequency Ω and the nanoparticle diffusivity D;
however, derivation of the exact expression for this multiplier is out of the scope of the present work, as long as it does
not affect the mathematical structure of the kinetic equation.

Notice that in reality, the relationship dV/dt = function(V) can appear to be more complicated. In fact, the aggregate
rotates in some volume having a disk-like shape, and after one spin, the aggregate can absorb most of the particles situ-
ated inside this disk-like cavity. In such situation, the free nanoparticles will diffuse from outside towards the cavity,
and the total flux will be affected by both convective transport of particles inside the cavity towards the aggregate and
purely diffusive transport of particles towards the cavity. From obvious electric analogy, one can deduce that the total
flux follows the rule of the series circuit with the inverse of the equivalent conductivity (the proportionality factor
between J and Δ) being the sum of inverse conductivities of purely convective (Equation 43) and purely diffusive
(J~V3/7Δ – see19) transports. In such circumstances, we get

dV=dt/ αV −2
3 + βV −3

7

� �−1
Δ tð Þ, ðA6Þ

with the dimensional constants α and β depending on exact expressions for the diffusive and convective fluxes. The
term in parentheses in Equation 44 is nothing but the function G(V), intervening into the aggregate growth rate
(Equation 4 with its dimensionless counterpart taking the form g(v) = [av−2/3+bv−3/7]−1, where a and b are dimension-
less constants proportional to α and β, respectively.

Notice that Equation 44 is expected to apply at intermediate field frequencies, which remain small enough such that
straight elongated shape of the aggregate is still stable, while Equation 43 is expected to apply for relatively low frequen-
cies when, after one aggregate spin, the nanoparticles have enough time to fill the cavity and compensate the “loss” of
the “cavity particles” absorbed by the aggregate. The frequency has to be however high enough such that the aggrega-
tion timescale is always much slower than the rotation period and the high Péclet number limit is still sasisfied.
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