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ON INTERSECTION OF PRIMARY SUBGROUPS OF ODD ORDER
IN FINITE ALMOST SIMPLE GROUPS

V. I. Zenkov and Ya. N. Nuzhin UDC 512.54

Abstract. We consider the question of the determination of subgroups A and B such that A∩Bg �= 1 for
any g ∈ G for a finite almost simple group G and its primary subgroups A and B of odd order. We prove
that there exist only four possibilities for the ordered pair (A,B).

Introduction

Let G be a finite group and A and B be its subgroups. By definition, M is the set of subgroups
that are minimal by inclusion among all subgroups of type A ∩ Bg, g ∈ G, and m consists of those
elements of the set M whose order is minimal. Set MinG(A, B) = 〈M〉 and minG(A, B) = 〈m〉. Evidently,
MinG(A, B) ≥ minG(A, B) and the following three conditions are equivalent:

(1) A ∩ Bg �= 1 for any g ∈ G;
(2) MinG(A, B) �= 1;
(3) minG(A, B) �= 1.
The first author showed that MinG(A, B) ≤ F (G) for any pair of Abelian subgroups A and B

of G [4, Theorem 1], where F (G) is the Fitting subgroup of G (the greatest normal nilpotent subgroup
of G). On the other hand, V. I. Zenkov and V. D. Mazurov proved that MinG(A, B) = 1 for any pair
of primary subgroups A and B of a simple non-Abelian group G [3, Theorem 1]. But also in the almost
simple group G 	 Aut

(
L2(7)

)
we have that MinG(S, S) = minG(S, S) = S for a Sylow 2-subgroup S of G.

Moreover, it is proved in [5] that for a group G with socle L2(q), q > 3, if subgroups A and B are primary,
then the inequality MinG(A, B) �= 1 is valid only for q = 9 and for the Mersenne prime q = 2n − 1; in
these cases subgroups A and B are 2-groups.

In the present paper, we consider the case where A and B are primary subgroups of odd order in
a finite almost simple group G. Our main result is the following theorem.

Theorem 1. Let G be a finite almost simple group and A and B be its primary subgroups of odd order.
Then the following are equivalent.

(1) MinG(A, B) �= 1.
(2) G contains a normal subgroup of index 1 or 2 that is isomorphic to D4(3) � Z3, and (A, B) ∈

{S, S0}2, where S is a Sylow 3-subgroup of G, S0 = O3

(
NG(P )

)
and P is a minimal proper

parabolic subgroup of the group D4(3) corresponding to the central node of the Coxeter graph of
type D4. Moreover, S0 = minG(S, S).

In Sec. 2, we establish some properties of subgroups of Chevalley groups, which are necessary for the
proof of Theorem 1 and, in the opinion of the authors, are also of independent interest.

1. Notation and Preliminary Results

A finite group G is called almost simple if Inn(K) ≤ G ≤ Aut(K), where K is a finite simple
non-Abelian group and Inn(K) and Aut(K) are, respectively, the groups of inner automorphisms and all
automorphisms of the group K. In this paper, the following shortcuts and notations are used:
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• gh = h−1gh for elements g and h of a group G;
• AB = {ab | a ∈ A, b ∈ B} for subsets A and B of a group G;
• A ≤ G denotes that A is a subgroup of a group G;
• 〈M〉 is the group generated by a set M ;
• NG(A) is the normalizer of a subgroup A in a group G;
• Op(G) is the maximal normal p-subgroup of a finite group G;
• A � B is the semidirect product of groups A and B with a normal subgroup A.

Actually, the proof of the implication (1) =⇒ (2) of Theorem 1 is reduced to the analysis of the
situation in the group D4(3) � Z3 by the usage of the following result of the first author.

Lemma 1 ([5, Theorem B(2a)]). Let G be a finite almost simple group, p be an odd prime, and S be
a Sylow p-subgroup of G. If S ∩ Sg �= 1 for any element g of G, then p = 3 and G contains a normal
subgroup of index 1 or 2 that is isomorphic to D4(3) � Z3.

We will also need the following two technical lemmas, which will be used in the sequel.

Lemma 2 ([5, Lemma 3.1]). Let G be a finite group and M1 be a subgroup of G. Let P1 be a Sylow
p-subgroup of M1 such that P1 ∩ P k

1 = Op(M1) for some k ∈ M , and M2 be a subgroup of G that is
conjugate with M1. Then there exists a Sylow p-subgroup P2 of M2 such that P1∩P2 ≤ Op(M1)∩Op(M2).

Lemma 3. Let A, B, and S be subgroups of a finite group G such that MinG(A, B) �= 1, A ≤ S, and
A∩Bh = S ∩Sh = T for some element h ∈ G and some cyclic subgroup T of prime order. Then TS ≤ A.

Proof. By the conditions of the lemma, we have that T s = S∩Shs ≥ A∩Bhs �= 1 for any s ∈ S. Therefore,
taking into account that T is a cyclic subgroup of prime order, we deduce the inclusion T s ≤ A for any
s ∈ S, i.e., TS ≤ A. The lemma is proved.

2. Some Properties of Intersections of Sylow p-Subgroups
of Chevalley Groups over a Finite Field of Characteristic p

Further, Φ is a reduced indecomposable root system, Π = {r1, . . . , rl} is its set of fundamental roots,
Φ+ is a positive root system with respect to Π, and also Φ− = −Φ+. We always assume that r1 is a short
root and the sum ri + rj , i ≤ j, is a root if and only if:

(i, j) = (l − 3, l) or (i, i + 1), 1 ≤ i ≤ l − 2, if Φ = El;
(i, j) = (1, 3) or (i, i + 1), 2 ≤ i ≤ l − 1, if Φ = Dl;
(i, j) = (i, i + 1) in all other cases.

We will need the following strengthening of Lemma 3.6.2 from [2, p. 50].

Lemma 4. Let a fundamental root ri1 be a part with nonzero coefficient of the expression of a root r ∈ Φ+

as an integral combination of fundamental roots with nonnegative coefficients. Then r can be expressed
as a sum of fundamental roots

r = ri1 + ri2 + · · · + rik

in such a way that ri1 + ri2 + · · · + ris is a root for all s ≤ k.

Proof. Let
r = c1r1 + · · · + clrl

be the expression of a root r ∈ Φ+ as an integral combination of fundamental roots with nonnegative
coefficients. Obviously, we have only the following two cases:

(1) ci ≤ 1;
(2) at least one of the numbers ci is greater than 1.
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For any subgraph of the Coxeter graph of type Φ, whose vertices are labeled by fundamental roots
rj1 , . . . , rjm , the sum rj1 + · · · + rjm is a root if and only if this subgraph is connected. Therefore, in the
first case the lemma is true. The second case is reduced by induction to the first one by virtue of the
following assertion:

if ci > 1 for some i, then there exists j such that cj > 1 and the difference r − rj is
a root.

(A)

Assertion (A) can be directly verified for every root system.
For the root system of type Al, only the first case is possible.
For the root system of type Bl in the case (2) we have

r = 2r1 + · · · + 2rs + rs+1 + · · · + rt,

where 1 ≤ s < t ≤ l. Here only the one variant j = s is possible, in order that the difference r − rj is
a root.

For the root system of type Cl in the case (2) we have

r = rt + · · · + rs−1 + 2rs + · · · + 2rl−1 + rl,

where 1 ≤ t ≤ s ≤ l − 1 (for s = 1 we set r = 2r1 + · · · + 2rl−1 + rl). Here also only one variant j = s is
possible.

For the root system of type Dl in the case (2) we have

r = r1 + r2 + 2r3 + · · · + 2rs + rs+1 + · · · + rt,

where 3 ≤ s < t ≤ l. Here also only one variant j = s is possible.
In the Tables V–VIII from [1] for the exceptional types El and F4 there are listed all positive roots

that have at least one of the numbers cj greater than 1. Using these tables, it is not difficult to check the
validity of assertion (A) for the types El and F4. Note that here for some roots the parameter j is not
uniquely defined.

For the type G2, correctness of conclusion (A) is easily checked and in this case the parameter j is
defined uniquely.

Hence, assertion (A), along with the lemma, is proved.

Further, Φ(q) is an adjoint Chevalley group of type Φ of rank l over the finite field Fq of order q = pn,
where p is a prime. The group Φ(q) is generated by the root subgroups

Xr = 〈xr(t) | t ∈ K〉, r ∈ Φ,

where xr(t) is the corresponding root element in the group Φ(q). We will need the following natural
subgroups of the group Φ(q):

• the unipotent subgroups

U = 〈Xr | r ∈ Φ+〉, V = 〈Xr | r ∈ Φ−〉,
• the monomial subgroup

N = 〈nr(t) | r ∈ Φ, t ∈ F
∗
q〉,

• the diagonal subgroup
H = 〈hr(t) | r ∈ Φ, t ∈ F

∗
q〉,

• and the Borel subgroup
B = UH.

Here, F∗
q is the multiplicative subgroup of the field Fq and

nr(t) = xr(t)x−r(−t−1)xr(t), hr(t) = nr(t)nr(−1).

We set also
I = {1, 2, . . . , l}.
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Overgroups of the Borel subgroup B and conjugate with them are called parabolic. Due to familiar
result of J. Tits, parabolic subgroups containing the subgroup B are

PJ = 〈B, nrj (1) | j ∈ J〉,
where J ⊆ I.

Lemma 5. Fix a monomial element n0 with the condition Un0 = V and a positive integer i ∈ I. Set
n = n0nri(1). Then U ∩ Un = Xri.

Proof. The root subgroups Xri and X−ri normalize the subgroup

Vri = 〈Xr | r ∈ Φ− \ {−ri}〉
and V = VriX−ri [2, Lemma 8.1.1]. Therefore, Un = V nri (1) = VriXri . Clearly, U ∩ VriXri = Xri . The
lemma is proved.

For l = 1 the root subgroup Xri coincides with a Sylow p-subgroup of the group Φ(q) and in this case
the element n from Lemma 5 is diagonal.

Lemma 6. Let P = PI\{i} be the parabolic maximal subgroup of the group Φ(q) of type Al, Dl, or El of
rank l ≥ 2 and the monomial element n as in Lemma 5. Then U ∩ Un = Xri and 〈XU

ri 〉 = Op(P ).

Proof. For Chevalley groups Φ(q) of any type, the equality

Op(P ) = 〈Xr | r = ckrk + · · · + ciri + · · · + cmrm, 1 ≤ k ≤ i ≤ m ≤ l, cj ≥ 1〉
holds [2, Theorem 8.5.2]. For types Al, Dl, and El, all structure constants of Chevalley’s commutator
formula are equal to 1. Hence, using Lemma 4, we can obtain the equality 〈XU

ri 〉 = Op(P ). Really, let
Xr ∈ Op(P ). Then by Lemma 4 as i = i1 for the root r we have the following representation:

r = ri1 + ri2 + · · · + rik ,

where the sum ri1 + ri2 + · · · + ris is the root for all s ≤ k. Therefore, we obtain inclusions

[Xri1
, Xri2

] = Xri1+ri2
⊂ 〈XU

ri 〉,
[Xri1+ri2

, Xri3
] = Xri1+ri2+ri3

⊂ 〈XU
ri 〉,

. . .

[Xri1+···+rik−1
, Xrk ] = Xri1+···+rik

= Xr ⊂ 〈XU
ri 〉.

Hence, 〈XU
ri 〉 = Op(P ). Lemma 5 gives the equality U ∩ Un = Xri . The lemma is proved.

Lemma 6 conclusion cannot be adapted in general for each types Bl, Cl, F4, and G2. For example,
the following result holds.

Lemma 7. Let P = PI\{1} be the parabolic maximal subgroup of the group Φ(2) of type Bl, l ≥ 2, over
the field of two elements, where r1 is short root. There is no root subgroup Xr such that 〈XU

r 〉 = Op(P ).

Proof. Due to the choice of the parabolic maximal subgroup P , the following equality is valid:

Op(P ) = 〈Xs | s = c1r1 + · · · + ckrk, 1 ≤ k ≤ l, cj ≥ 1〉.
It is trivial, that the equality 〈XU

r 〉 = Op(P ) is admissible only for r = r1. Note that the subgroup 〈XU
r1〉

contains the product xr1+r2(1)x2r1+r2(1), but individually the elements xr1+r2(1) and x2r1+r2(1) do not
belong to 〈XU

r1〉. The lemma is proved.

Figure 1 depicts correspondence between nodes of the Coxeter graph and roots from the fundamental
root system, which are associated with the Chevalley group of type D4, is recognized.
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Lemma 8. Let G = D4(3) � 〈τ〉 and S = U � 〈τ〉, where τ is the graph automorphism of order 3 of the
group D4(3) as in Fig. 1, and let the monomial element n = n0nr1(1) ∈ D4(3) be as in Lemma 5. Then
S ∩ Sn = Xr1, in particular, U ∩ Un = Xr1.

Proof. In the Weyl group of type D4, there exists an element w0 such that w0(r) = −r for any root r.
Moreover, w0 coincides with the cube c3 of the Coxeter element

c = wr3wr1wr2wr4 .

Hence in our case the element n0 is the preimage of the element w0 under the homomorphism of the
monomial subgroup of the group D4(3) on the Weyl group of type D4. Moreover, we can assume that

n0 =
(
nr3(1)nr1(1)nr2(1)nr4(1)

)3
.

Since the graph automorphism τ centralizes the monomial element

nr3(1)nr1(1)nr2(1)nr4(1)

(see Fig. 1 and [2, Proposition 12.2.3]), then

τn = τnr1 (1) = τnr2(−1)nr1(1).

It is clear that τnr2(−1)nr1(1) /∈ 〈τ〉. Therefore, and from the equality U ∩ Un = Xr1 , which is given by
Lemma 5, we obtain the equality S ∩ Sn = Xr1 . The lemma is proved.

Lemma 9. Let G, S, and τ be as in Lemma 8. Set S0 = Ur3 � 〈τ〉, where Ur3 = 〈Xr | r ∈ Φ+ \ {r3}〉.
Then S0 = minG(S, S).

Proof. The subgroup S is a Sylow 3-subgroup of G. Therefore, by Lemma 1 S ∩ Sx �= 1 for any x ∈ G,
whence minG(A, B) = 〈m〉 �= 1 and by Lemma 5 the set m consists of subgroups of order 3. Further,
in the Coxeter graph of type D4 the roots r1, r2, and r4 coincide with symmetric nodes (see Fig. 1),
whence Lemma 8 is valid if the root r1 is exchanged with the root r2 or r4. Therefore, by Lemma 6
O3

(
P{i}

) ≤ minG(S, S) for any i = 1, 2, 4. Thus, Lemmas 1, 5, 6, and 8 along with the equality
〈
O3

(
PI\{1}

)
, O3

(
PI\{2}

)
, O3

(
PI\{4}

)〉
= O3

(
P{3}

)

give the inclusion S0 ≤ minG(S, S).
Suppose that S0 < minG(S, S). Then there exists an element (subgroup) D of the set m such that

D = S ∩ Sg �≤ S0 for some g ∈ G. Because of |S ∩ Sg| = 3 by Lemma 8, we see that S0 ∩ Sg
0 = 1. The

subgroups S and S0 satisfy the conditions of Lemma 2 as

G = D4(3) � 〈τ〉, M1 = NG

(
P{3}

)
, P1 = S, O3(M1) = S0, k = nr3(1), O3(M2) = S0.

Thus, by Lemma 2
S ∩ Sx ≤ S0 ∩ Sg

0 = 1
for suitable x ∈ G. Hence, S ∩ Sx = 1. This contradicts Lemma 1. The lemma is proved.
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3. The Proof of Theorem 1

Let a group G satisfy the conditions of Theorem 1. Further, we use the notation of the preceding
section for subgroups and elements of the Chevalley group D4(3).

(1) =⇒ (2). Let MinG(A, B) �=1. Since A and B are primary subgroups, the condition MinG(A, B) �=1
implies that subgroups A and B are p-groups for an odd prime p. Hence, without losing generality, we
can assume that the subgroups A and B lie in one fixed Sylow p-subgroup S of the group G. Now again
by the condition MinG(A, B) �= 1 we get the inequality S ∩ Sg �= 1 for any element g of G. Therefore, by
Lemma 1 we can assume that p = 3 and the group G contains the normal subgroup

G0 = D4(3) � 〈τ〉
of index 1 or 2, where τ is a graph automorphism of order 3 of the group D4(3). We can assume that

S = U � 〈τ〉.
Let

n0 =
(
nr3(1)nr1(1)nr2(1)nr4(1)

)3
.

Then (see the proof of Lemma 8)
S ∩ Sn0 = 〈τ〉.

Since
〈τ〉 = S ∩ Sn0 ≥ A ∩ Bn0 �= 1,

we obtain
A ∩ Bn0 = 〈τ〉.

By Lemma 8 there exists a monomial element n ∈ D4(3) such that

S ∩ Sn = Xr1 .

Since
Xr1 = S ∩ Sn ≥ A ∩ Bn �= 1,

we have that
A ∩ Bn0 = Xr1 .

Now by Lemma 3, we have that
XS

r1 ≤ A.

By Lemma 6,
〈XU

r1〉 = O3

(
PI\{1}

)
.

As τ ∈ A,
〈
O3

(
PI\{1}

)
, O3

(
P τ

I\{1}
)
, O3

(
P τ2

I\{1}
)〉

= O3

(
P{3}

) ≤ A.

Hence
O3

(
NG

(
P{3}

)) ≤ A.

Suppose that

S0 = O3

(
NG

(
P{3}

))
.

Note that |S : S0| = 3. Therefore, either A = S0 or A = S. The condition A ∩ Bg �= 1 for any g ∈ G is
equivalent to the condition B ∩ Ag−1 �= 1 for any g ∈ G. Thus,

(A, B) ∈ {S, S0}2.
It remains only to prove the equality S0 = minG(S, S). We have two cases only:
(a) G = G0;
(b) |G : G0| = 2.
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In case (a), the equality S0 = minG(S, S) is valid by Lemma 9.
The case (b) follows from (a) and the invariance of subgroup S with respect to outer (graph) auto-

morphisms of order 2 of the group D4(3).
(1) ⇐= (2). It is clear that for the pair (S, S) the inequality S ∩Sg �= 1 for any element g ∈ G follows

from the recently found equality S0 = minG(S, S).
It is already known that S ∩ Sg �= 1 for any g ∈ G and S ∩ Snr3 (1) = S0. Then by Lemma 2 (see the

proof of Lemma 9) we have S0 ∩ Sg
0 �= 1 and, moreover, S0 ∩ Sg �= 1 and S ∩ Sg

0 �= 1 for any g ∈ G. This
concludes the proof of our theorem.
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