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In this paper, we construct and analyze a linearized finite difference/Galerkin–Legendre spectral scheme for the nonlinear
multiterm Caputo time fractional-order reaction-diffusion equation with time delay and Riesz space fractional derivatives. The
temporal fractional orders in the considered model are taken as ð0 < β0 < β1 < β2<⋯<βm < 1Þ. The problem is first
approximated by the L1 difference method on the temporal direction, and then, the Galerkin–Legendre spectral method is
applied on the spatial discretization. Armed by an appropriate form of discrete fractional Grönwall inequalities, the stability
and convergence of the fully discrete scheme are investigated by discrete energy estimates. We show that the proposed method
is stable and has a convergent order of 2 − βm in time and an exponential rate of convergence in space. We finally provide
some numerical experiments to show the efficacy of the theoretical results.

1. Introduction

Fractional-order partial differential equations have evolved
into powerful tools for describing a wide range of anomalous
behavior and complex systems in natural science and engi-
neering [1–8]. In addition, time delay occurs frequently in
realistic world and it has been considered in numerous
mathematical models, e.g., automatic control systems with
feedback and population dynamics. Moreover, fractional dif-
ferential equations with delay have been used widely in a
variety of scientific and technical disciplines, including the
study of natural phenomena, mathematical modelling, and
the studies of porous media [9, 10]. Recently, a two-term
time-fractional differential equation that contains specific

instances of the fractional diffusion-wave problem (see, for
example, [11, 12]) has been investigated in the literature.

In recent years, multiterm time-fractional differential
equations have attracted the attention of many researchers.
The ability of these equations to describe complex multirate
physical phenomena is a motivating force behind their
development (see, e.g., [13–15]). They were proposed to
improve the modelling accuracy by accurately depicting
the anomalous diffusion process [16], accurately modelling
various types of viscoelastic damping [17], and accurately
reproducing the unsteady flow of a fractional Maxwell fluid
[18] and Oldroyd-B fluid [19]. Daftardar-Gejji and Bhalekar
[20] considered the multiterm time-fractional diffusion wave
equation with constant coefficients. Through the use of a
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domain decomposition technique, they were able to derive
the linear and nonlinear diffusion-wave equations of the
fractional order. Luchko [21] used an appropriate maximum
principle and the Fourier technique to study the existence,
uniqueness, and a priori estimates for the multiterm time-
fractional diffusion equation with variable coefficients. A
new analytic technique for solving three types of multiterm
time-space fractional advection diffusion equations with
nonhomogeneous Dirichlet boundary conditions was pro-
posed by Jiang et al. [22], based on Luchko’s theorem and
the equivalent relationship between the Laplacian operator
and the Riesz fractional derivative. Ding and Jiang [23] used
the technique of spectral representation of the fractional
Laplacian operator in order to provide the analytical solu-
tions for the multiterm time-space fractional advection-
diffusion equations with mixed boundary conditions. For
the solution of initial-boundary value problems of multiterm
time fractional diffusion equations, Li et al. [24] examined
the well-posedness and long-time asymptotic behaviour of
the equations. Zaky [25] constructed a Legendre spectral
tau algorithm to deal with the multiterm time-fractional dif-
fusion equations. Hendy [26] presented numerical treatment
for solving a class of one-dimensional multiterm time-space
fractional advection-diffusion equations with a temporal
delay of the functional type. Hendy and De Staelen [27]
developed a high-order numerical approximation approach
for multiterm time convection diffusion wave equations with
a nonlinear fixed time delay. To solve a coupled system of
nonlinear multiterm time-space fractional diffusion equations
over a nonuniform temporal mesh, Hendy and Zaky [28]
developed an effective finite difference/spectral approach.
Very recently, Zaky et al. [29] presented a discrete fractional
Grönwall inequality that is consistent with the L2 − 1σ to cope
with the analysis of multiterm time-fractional partial differen-
tial equations. The key advantage of the proposed discrete
Grönwall inequality over earlier efforts was that it can be uti-
lised to provide optimal error estimates for multiterm frac-
tional problems with nonlinear delay. Inspired by these
inequalities, we can state and prove the convergence and sta-
bility estimates for our proposed fully discrete scheme. The
discrete versions of Grönwall inequalities are of high concern
in the numerical analysis of the numerical schemes for frac-
tional differential equations [30, 31].

Single-term fractional differential equations are often
unable to describe some of the changing characteristics of
the systems accurately. However, several multiterm frac-
tional differential equations provide us with new tools to
solve such problems. The multiterm time-fractional diffu-
sion equation is useful not only for modelling the behaviour
of viscoelastic fluids and rheological materials [32] but also
for approximating distributed-order differential equations
[33]. Hence, studies on the multiterm time-fractional differ-
ential equations have become important and useful for dif-
ferent applications. The multiterm time-fractional diffusion
equation, whose weight function is taken into the linear
combination of the Dirac δ-functions, is an important spe-
cial case of the time-fractional diffusion equation of distrib-
uted order. In this paper, we consider the numerical
approximations to the following generalized nonlinear mul-

titerm time-space fractional reaction-diffusion equations
with delay:

〠
m

r=0
qr
∂βr u

∂tβr
= κ

∂αu
∂ xj jα + f u x, tð Þ, u x, t −~sð Þð Þ

+ g x, tð Þ,  x ∈Ω, t ∈ I,
ð1Þ

endowed with initial-boundary conditions of the form

u x, tð Þ = ψ x, tð Þ, x ∈Ω, t ∈ −~s, 0½ �,
u a, tð Þ = u b, tð Þ = 0, t ∈ I:

(
ð2Þ

Here, Ω = ða, bÞ ⊂ℝ and I = ð0, T� ⊂ℝ are space and
time domains, respectively. We denote ∂βr /∂tβr as the
Caputo fractional derivative with the fractional orders ð0 <
β0 < β1 < β2<⋯<βm < 1Þ. The parameters κ, s are positive
constants. The parameters qr are absolutely positive. Also,
1 < α < 2 is the space fractional order. The left and right
Riemann-Liouville fractional derivatives of order αðn − 1 <
α < nÞ on the infinite domain [34] are defined as

−∞Dα
xu x, tð Þ = 1

Γ n−αð Þ
∂n

∂xn

ðx
−∞

x − τð Þn−1−αu τ, tð Þdτ,

xD
α
∞u x, tð Þ = −1ð Þn

Γ n − αð Þ
∂n

∂xn

ð∞
x

τ − xð Þn−1−αu τ, tð Þdτ,

ð3Þ

where ΓðxÞ is the gamma function. Thus, the space frac-
tional derivative in the Riesz form on the space interval Ω
can be defined as [35]

∂αu
∂ xj jα = −cα aD

α
xu x, tð Þ+xD

α
bu x, tð Þð Þ,

  cα =
1

2 cos πα/2ð Þ , 1 < α < 2:
ð4Þ

The Caputo derivative ∂β/∂tβ is defined as

∂β

∂tβ
u x, tð Þ = 1

Γ 1 − βð Þ
ðt
0
t − rð Þ−β ∂

∂r
u x, rð Þdr, 0 < β < 1:

ð5Þ

The main aim of this work is to construct and analyze an
efficient linearized numerical scheme for the nonlinear mul-
titerm Riesz space and Caputo time fractional reaction-
diffusion problem with fixed delay. A hybrid numerical
scheme combines the Galerkin–Legendre spectral schemes,
and a uniform L1-type interpolation technique is designed.
The main challenges of the considered work are represented
in how to numerically approximate the time Caputo frac-
tional derivative, Riesz space fractional derivatives, and the
time delay to produce an easy-to-implement and consistent
numerical scheme. Overcoming all of these challenges to
yield a hybrid linear numerical scheme is a first target. The
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other target is to analyze the convergence and stability. The
theoretical analysis of the constructed fully discrete scheme
is successfully estimated using appropriate discrete fractional
Grönwall inequalities, and the scheme is proven to be
unconditionally stable and convergent.

The outline of this paper is as follows. In the next sec-
tion, we will go over some essential definitions and proper-
ties of fractional derivative spaces, fractional Sobolev
spaces, and Jacobi polynomials. The steps needed to con-
struct a fully discrete scheme on a uniform mesh are detailed
in Section 3. Some technical lemmas from the literature are
summarized in Section 4. Furthermore, the stability and
the convergence analyses of the fully discrete scheme are
studied in Section 5. Finally, numerical experiments are per-
formed in Section 6 to illustrate the convergence analysis of
the proposed approach.

2. Preliminaries

We here give some essential fractional derivative spaces [36]
and their required features which will be helpful in the com-
ing analysis. After that, the definition of Jacobi polynomials
and their basic properties are recalled. We now fix some
notations for the sake of clearness:

(i) ð·, · Þ0,Ω is the inner product on the space L2ðΩÞ
with the L2-norm k·k0,Ω

(ii) The maximum norm is defined as k·k∞
(iii) C∞

0 ðΩÞ is the space of smooth functions with com-
pact support in Ω

(iv) HrðΩÞ and Hr
0ðΩÞ are the usual Sobolev spaces

with the norm k·kr and seminorm j·jr
(v) P NðΩÞ is the space of polynomials defined on the

domain Ω with degree at most N

(vi) The approximation space W 0
N is defined as W 0

N =
P NðΩÞ ∩H1

0ðΩÞ
(vii) IN is the Legendre-Gauss-Lobatto interpolation

operator IN : Cð�ΩÞ⟶W N as

u xkð Þ = INu xkð Þ ∈P N , k = 0, 1,⋯,N: ð6Þ

Definition 1. Fractional derivative spaces and their related
norms and seminorms are defined as follows [36]:

(i) Left fractional space: let η > 0. Define the seminorm

jujJηLðΩÞ = k aD
η
xuk0,Ω and the norm kukJηLðΩÞ =

ðjuj2JηLðΩÞ + kuk20,ΩÞ
1/2
, and let JηL (or JηL,0) denote

the closure of C∞ðΩÞ (or C∞
0 ðΩÞ) with respect to

k·kJηLðΩÞ

(ii) Right fractional space: let η > 0: Define the semi-

norm jujJηRðΩÞ = k xD
η
buk0,Ω and the norm kukJηRðΩÞ

= ðjuj2JηRðΩÞ + kuk20,ΩÞ
1/2
, and let JηR (or JηR,0) denote

the closure of C∞ðΩÞ (or C∞
0 ðΩÞ) with respect to

k·kJηRðΩÞ

(iii) Symmetric fractional space: let η ≠ n − ð1/2Þ, n ∈ℕ:

Define the seminorm jujJηs ðΩÞ = jðaDη
xu, xD

η
buÞ0,Ωj

1/2

and the norm kukJηs ðΩÞ = ðjuj2Jηs ðΩÞ + kuk20,ΩÞ
1/2
,

and let Jηs (or Jηs,0) denote the closure of C∞ðΩÞ
(or C∞

0 ðΩÞ) with respect to k·kJηs ðΩÞ

(iv) Fractional Sobolev space: let η > 0. Define the frac-
tional Sobolev space HηðΩÞ as HηðΩÞ = fu ∈ L2ðΩÞ
jjωjηFðûÞ ∈ L2ðℝÞg, endowed with the seminorm

jujHηðΩÞ = kjωjηFðûÞk0,ℝ and the norm kukHηðΩÞ =
ðjuj2HηðΩÞ + kuk20,ΩÞ

1/2
, where FðûÞ is the Fourier

transformation of û and û is the extension of zero
of u outside Ω. Denote by HηðΩÞ (or Hη

0ðΩÞ) the
closure of C∞ðΩÞ (or C∞

0 ðΩÞ) with respect to
k·kHηðΩÞ.

Lemma 2 (see [36]). The spaces JηL, J
η
R, J

η
s , and Hη are equiv-

alent, with equivalent seminorms and norms if η ≠ n − ð1/2Þ
, n ∈ℕ.

Lemma 3 (adjoint property). Let 1 < η < 2, then for any u ∈
Hη

0ðΩÞ and υ ∈Hη/2
0 ðΩÞ, we get

aD
η
xu, υð Þ0,Ω = aD

η/2
x u, xD

η/2
b υ

� �
0,Ω

, xD
η
xu, υð Þ0,Ω

= xD
η/2
x u, aD

η/2
b υ

� �
0,Ω

:
ð7Þ

Spectral methods are characterized by the expansion of
the solution in terms of global and, usually, orthogonal poly-
nomials [37–40]. Now, we present the Jacobi polynomials
and some of their basic properties. The vital role in the field
of spectral methods arose from the nature of Jacobi
weights which are related to the singular kernels of time
Caputo fractional derivatives of order 0 < β < 1. Denote
Jμ,νi ðxÞ, μ, ν > −1 as the i-th order Jacobi polynomial of
index defined on ½−1, 1�. As all classic orthogonal polyno-

mials, fJμ,νi ðxÞgNi=0 satisfies the following three-term-
recurrence relation:

Jμ,ν0 xð Þ = 1,

Jμ,ν1 xð Þ = 1
2 2 + μ + νð Þx + 1

2 μ − νð Þ,

Jμ,νi+1 xð Þ = Aμ,ν
i x − Bμ,ν

i

� �
Jμ,νi xð Þ − Cμ,ν

i Jμ,νi−1 xð Þ, if 1 ≤ i ≤N:

8>>>><
>>>>:

ð8Þ
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The recursion coefficients are given by

Aμ,ν
i = 2i + μ + ν + 1ð Þ 2i + μ + ν + 2ð Þ

2 i + 1ð Þ i + μ + ν + 1ð Þ ,

Bμ,ν
i = 2i + μ + ν + 1ð Þ ν2 − μ2

� �
2 i + 1ð Þ i + μ + ν + 1ð Þ 2i + μ + νð Þ ,

Cμ,ν
i = 2i + μ + ν + 2ð Þ i + μð Þ i + νð Þ

i + 1ð Þ i + μ + ν + 1ð Þ 2i + μ + νð Þ :

8>>>>>>>><
>>>>>>>>:

ð9Þ

Let ωμ,νðxÞ = ð1 − xÞμð1 + xÞν. Then, one has

ð1
−1
Jμ,νi xð ÞJμ,νj xð Þωμ,ν tð Þdx = γ

μ,ν
i δi,j, ∀i = 0, 1,⋯,N ,

ð10Þ

where δi,j is the Kronecker delta function and

γμ,νi = 2 μ+ν+1ð ÞΓ i + μ + 1ð ÞΓ i + ν + 1ð Þ
2i + μ + ν + 1ð Þi!Γ i + μ + ν + 1ð Þ , ∀i = 0, 1,⋯,N:

ð11Þ

In particular, the Legendre polynomial is defined as
LiðxÞ = J0,0i ðxÞ.

3. The Numerical Scheme

Here, we provide a fully discrete scheme for the problems (1)
and (2) based on the L1-type approximation for the Caputo
time-fractional derivative and the Legendre-Galerkin spec-
tral method in space. To discretize the time-fractional deriv-
atives, we divide the interval ½0, T� uniformly with a time
step size τ defined by τ =~s/N~s such that N~s is a positive inte-
ger. The uniform partitions given by tn = nτ, ∀−N~s ≤ n ≤M,
where M = dT/τe: The L1 interpolation scheme for the
time-fractional derivative of order 0 < βr < 1, r = 0, 1, 2,⋯,
m, in the Caputo sense at the time tn is defined as

〠
m

r=0
qr
∂βr u
∂tβr

�����
t=tn

= 〠
m

r=0
qr

ðtn
0
u′ x, ηð Þω1−βr

tn − ηð Þdη

= 〠
m

r=0

qr
Γ 1 − βrð Þ〠

n

i=1

u x, tið Þ − u x, ti−1ð Þ
τ

�
ðti
ti−1

tn − ηð Þ−βr dη + rnτ

= 〠
m

r=0

qr
Γ 2 − βrð Þτβr

〠
n

i=1
aβr
i u x, tið Þ

− u x, ti−1ð Þ + rnτ ,

ð12Þ

where ωβr
ðtÞ = tβr−1/ΓðβrÞ, t > 0, and aβr

j = ðj + 1Þ1−βr − j1−βr ,

for each j ≥ 0. If u ∈ C2ð½0, T� ; L2ðΩÞÞ, then there exists a
constant C > 0 such that the truncation error rnτ satisfies
krnτk ≤ Cτ2−βm , for each n = 0, 1,⋯,M (see [41]).

Definition 4. Let fungMn=0 be a sequence of real functions
defined on Ω. We define the multiterm discrete time-

fractional difference operator ∑m
r=0qrD

βr
τ by

〠
m

r=0
qrD

βr
τ un = 〠

m

r=0

qr
Γ 2 − βrð Þτβr

〠
n

i=1
aβr
n−iδtu

i

= 〠
m

r=0

qr
Γ 2 − βrð Þτβr

〠
n

i=0
bβr
n−iu

i, ∀n = 1,⋯,M:

ð13Þ

In this expression, δtu
i = ui − ui−1, and the constants are

defined by bβr
0 = aβr

0 ,bβrn = −aβr
n−1, and bβr

n−i = aβrn−i − aβrn−i−1, for
each i = 1,⋯, n − 1.

In order to provide a semidiscretized form of (1) at each
time tn, we approximate the time-fractional term through
(13). Taylor approximations are used to approximate the
nonlinear source function in a linear style. As a conse-
quence, we obtain the discrete-time system:

〠
m

r=0
qrD

βr
τ un =

∂αun

∂ xj jα + f 2un−1 − un−2, un−N ~s
� �

+ gn xð Þ,  1 ≤ n ≤M,∀x ∈Ω,
ð14Þ

un xð Þ = ψ xð Þ,  −N~s ≤ n ≤ 0, x ∈Ω: ð15Þ

We define the following function space to give appropri-
ate base functions such that the boundary conditions are sat-
isfied exactly as clarified in spectral methods for space-
fractional differential equations [42, 43].

W0
N = span φn xð Þ: n = 0, 1,⋯,N − 2f g, ð16Þ

where for each x̂ ∈ ½−1, 1�, the function φn is given by

φn xð Þ = Ln x̂ð Þ − Ln+2 x̂ð Þ = 2n + 3
2 n + 1ð Þ 1 − x̂2

� �
J1,1n x̂ð Þ, ð17Þ

and x = 1/2ððb − aÞx̂ + a + bÞ ∈ ½a, b�.
We introduce the parameter σr = qr/Γð2 − βrÞτβr . Then,

the scheme (14) can be rewritten in the following equivalent
form:

〠
m

r=0
σra

βr
0 u

n − κ
∂αun

∂ xj jα = 〠
m

r=0
σr a

βr
n−1u

0 − 〠
m

r=0
σr 〠

n−1

i=1
bβrn−iu

i

+ f 2un−1 − un−2, un−N~s
� �

+ gn xð Þ, ∀n = 1,⋯,M:

ð18Þ
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The fully discrete L1-Galerkin spectral scheme consists
of the set of approximations unN ∈W0

N , satisfying the system:

where π1,0
N is an appropriate projection operator. We expand

the approximate solution as

unN = 〠
N−2

i=0
ûni φi xð Þ: ð20Þ

Substituting this expression into (19) and letting υ = φk,
for each 0 ≤ k ≤N − 2, we obtain the following matrix repre-

sentation of the uniform L1-Galerkin spectral scheme:

〠
m

r=0
σra

βr
0 �M − κcα S + ST

� � !
Un = Kn−1 + Rn−1 + Fn: ð21Þ

The notations in this expression are given by the system
of identities:

Lemma 5 (see [42, 43]). The components of the stiffness
matrix S are sij = aji − aj+2i − aji+2 + aj+2i+2 , for each i, j = 0, 1,⋯
,N − 2. Here,

aji =
ð
Ω
aD

α/2
x Li x̂ð ÞxDα/2

b Lj x̂ð Þdx

= b − a
2

� �1−α Γ i + 1ð ÞΓ j + 1ð Þ
Γ i − α/2ð Þ + 1ð ÞΓ j − α/2ð Þ + 1ð Þ

· ·〠
N

r=0
ϖ−α/2,−α/2
r Jα/2,−α/2i x−α/2,−α/2r

� �
J−α/2,α/2j x−α/2,−α/2r

� �
,

ð23Þ

and fx−α/2,−α/2r , ϖ−α/2,−α/2
r gNi=0 is the set of Jacobi–Gauss points

and weights with respect to the weight function ω−α/2,−α/2. The

mass matrix �M is symmetric, with nonzero components:

mij =mji =

b − a
2j + 1

+ b − a
2j + 5

, ∀i = j,

−
b − a
2j + 5

, ∀i = j + 2:

8>>><
>>>:

ð24Þ

4. Technical Lemmas

Several lemmas that will be invoked through our analysis
appeared in that section. In the sequel, C and Cu will denote
generic positive constants independent of τ, N , and n and
may be different under different circumstances. We also fix
the following notation ℤ½a,b� =ℤ ∩ ½a, b�, such that ℤ is the
set of all integers.

〠
m

r=0
σra

βr
0 unN , υð Þ − κ

∂α

∂ xj jα u
n
N , υ

� �
= 〠

m

r=0
σra

βr
n−1 u0N , υ
� �

− 〠
m

r=0
σr 〠

n−1

i=1
bβr
n−i u

i
N , υ

� �
+ IN f 2un−1N − un−2N , un−N~s

N

� �
, υ

� �
+ INg

n xð Þ, υð Þ, ∀υ ∈W0
N ,∀n = 1,⋯,M,

unN = π1,0
N ψ tn, xð Þ,  −N~s ≤ n ≤ 0,

8>><
>>:

ð19Þ

sij =
ð
Ω
aD

α/2
x φi xð ÞxDα/2

b φj xð Þdx, S = sij
� �N−2

i,j=0,

mij =
ð
Ω

φi xð Þφj xð Þdx, �M = mij

� �N−2
i,j=0,

hn−1i =
ð
Ω

φi xð ÞIN f 2un−1N − un−2N , un−Ns
N

� �
dx, Rn−1 = hn−10 , hn−11 ,⋯, hn−1N−2

� �⊤,
gni =

ð
Ω

φi xð ÞINgndx, Fn = gn
0 , gn1 ,⋯, gnN−2ð Þ⊤,

Un = ûn0 , ûn1 ,⋯, ûnN−2ð Þ⊤, Kn−1 = −〠
m

r=0
σr 〠

n−1

j=0
bβrn−j �MUj:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð22Þ
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Throughout the coming context, we will use the notation

A u,wð Þ = κcα aD
α/2
x u,xDα/2

b w
� �

+ xD
α/2
b u,aDα/2

x w
� �	 


: ð25Þ

The orthogonal projection operator πα/2,0
N : Hα/2

0 ðΩÞ
⟶W 0

N will be such that

A u − πα/2,0
N u,w

� �
= 0, ∀u ∈Hα/2

0 Ωð Þ,w ∈W0
N : ð26Þ

For convenience of theoretical analysis, we give the fol-
lowing seminorm and norm:

uj jα/2 ≔ A u, uð Þ1/2, ð27Þ

uk kα/2 ≔ uk k2 + uj j2α/2
� �1/2, ð28Þ

which are equivalent to the seminorms and norms of
Jα/2L ðΩÞ, Jα/2R ðΩÞ, Jα/2S ðΩÞ, and Hα/2ðΩÞ. We recall the follow-
ing three lemmas from [43].

Lemma 6. Let α and s be arbitrary real numbers satisfying
0 < α < 1, α < s, α ≠ 1/2. Then, there exists a positive constant
C independent of N such that, for any function u ∈Hα/2

0 ðΩÞ
∩HsðΩÞ, the following estimate holds:

u − πα/2,0
N u

�� ��
α/2 ≤ CNα/2−s uk ks: ð29Þ

Lemma 7. Suppose that Ω = ða, bÞ, u ∈Hα/2
0 ðΩÞ. Then, there

exist positive constants C1 < 1 and C2 independent of u, such
that

C1 uk kα/2 ≤ uj jα/2 ≤ uk kα/2 ≤ C2 uj jHα/2 Ωð Þ: ð30Þ

The following lemma and remark summarize the prop-
erties of the interpolation operator IN .

Lemma 8 (see [44]). Let s ≥ 1. If u ∈HsðΩÞ, then there exists
a constant C > 0 independent of N, such that ku − INukl ≤
CNl−skuks, for any 0 ≤ l ≤ 1.

Remark 9. A smooth solution of a fractional differential
equation does not mean a smooth source term and vice
versa. Therefore, the regularity order s of the solution u is
not the same as the regularity order r of the source term g,
i.e.,

INg − gk k ≤ CN−r uk kr , ∀g ∈Hr Ωð Þ: ð31Þ

Lemma 10 (see [45]). For any function uðtÞ which is abso-
lutely continuous on ½0, T�, the following inequality is satis-
fied:

∂β

∂tβ
u tð Þ, u tð Þ

 !
≥
1
2
∂β

∂tβ
u tð Þk k2: ð32Þ

Lemma 11 (see [46]). The discrete counterpart to the
inequality (32) is given as

Dβ
τu

k, uk
� �

≥
1
2
Dβ
τ uk
��� ���2, ð33Þ

such that Dβ
τuk is the discrete time-fractional difference oper-

ator of the L1 type as defined in (13).

Plenty of researchers in recent years are stuck on the study
of the continuous fractional Grönwall-type inequalities and
their developments. However, the discrete fractional
Grönwall-type inequality was far from well investigated, and
more recently, the efforts paid in [47–50] tried to fill that
gap. In what follows, we present recent discrete fractional-
type inequalities. These inequalities play an important role in
analyzing stability and convergence of the L1-schemes for
the multiterm problems with nonlinear delay.

Lemma 12 (discrete fractional Grönwall inequality [29]). Let
fϕig∞i=−N~s

and fξlg∞l=0 be nonnegative sequences. Let εl, μi, ∀l
= 0,⋯,m, i ∈ℤ½1,6� and c0 be positive constants independent
of τ. The fractional orders are defined as 0 < β0 ≤ β1 ≤⋯≤
βm−1 ≤ βm ≤ 1. If ϕi ≥ 0∀i ≥ 0, ϕ0 is known and ϕi = 0 if i < 0,

〠
m

l=0
εlD

βl
τ ϕ

j ≤ μ1ϕ
j + ε0 ξj

��� ���2∀j ≤N~s,

〠
m

l=0
εlD

βl
τ ϕ

j ≤ μ1ϕ
j + μ2ϕ

j−1 + μ3ϕ
j−2 + μ4ϕ

j−3 + μ5ϕ
j−N~s−1

+ μ6ϕ
j−Ns + ε0 ξj

��� ���2,∀j >N~s,

ð34Þ

where c0 and μiði = 1,⋯, 6Þ are positive constants. Then,
there exists a positive constant τ∗ ≥ τ such that

ϕn ≤ 2
c0t

βm
n

εmΓ 1 + βmð Þ 〠
n

j=1
ξj
��� ���2τ + ϕ0W

 !" #
Eβm

2μtβm
n

εm

 !
,

ð35Þ

where EβðzÞ =∑∞
k=0z

k/Γð1 + kβÞ is the Mittag-Leffler func-
tion and

〠
m

l=0
εl

Δ1−βl

Γ 2 − βlð Þ〠
k

j=1
aβl
j−1 ≔W > 0,

μ = μ1 +
μ2

aβm0 − aβm
1

+ μ3

aβm
1 − aβm

2

+ μ4

aβm
2 − aβm

3

+ μ5

aβm
N~s−2 − aβm

N~s−1

+ μ6

aβm
N~s−1 − aβm

N~s

:

ð36Þ
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5. Theoretical Analysis

The purpose of this section is to study the efficiency of the
fully discrete Galerkin spectral methods for (1) and (2).
We start by stability analysis and gives theorem of stability
in the first subsection. The second subsection is devoted to
the convergence analysis, and the theorem of convergence
is given there. For the theoretical analysis requirements, we
assume that the function f satisfies the following Lipschitz
condition

f u1, v1ð Þ − f u2, v2ð Þj j ≤ L u1 − u2j j + v1 − v2j jð Þ, ð37Þ

where L is a positive constant.

5.1. Stability Analysis. The weak formulation of the scheme

is as follows: find fukNg
M
k=1 ∈P N , such that

〠
m

r=0
qrD

βr
τ ukN , υN

 !
+ A ukN , υN
� �

= IN f 2uk−1N − uk−2N , uk−N~s
N

� �
, υN

� �
+ IN gk, υN
� �

, ∀υN ∈P N ,

ð38Þ

with

ukN = π1,0
N φk,  −N~s ≤ k ≤ 0: ð39Þ

It is a linear iterative scheme which means that we need
only to get a solution to a system of linear equations at each
time level. The well-posedness of that scheme is satisfied by

the well-known Lax-Milgram lemma. Assume that f~ukNg
M
k=1

is the solution of

〠
m

r=0
qrD

βr
τ ~ukN , υN

 !
+ A ~ukN , υN
� �

= IN f 2~uk−1N − ~uk−2N , ~uk−N~s
N

� �
, υN

� �
+ IN ~gk, υN
� �

, ∀υN ∈P N ,

ð40Þ

with initial conditions

~ukN = π1,0
N φk,  −N~s ≤ k ≤ 0: ð41Þ

Now, we present the theorem of stability in the following
context.

Theorem 13. The fully discrete scheme (38) is uncondition-
ally stable in the sense that for all τ > 0, the following holds:

ukN − ~ukN
��� ���2 ≤ C max

1≤k≤M
gk − ~gk
��� ���2: ð42Þ

Proof. Denote ηkN = ukN − ~ukN . Subtracting (40) from (38), the
following holds:

〠
m

r=0
qrD

βr
τ η

k
N , υN

 !
+ A ηkN , υN
� �

= IN f 2uk−1N − uk−2N , uk−N~s
N

� ��
− IN f 2~uk−1N − ~uk−2N , ~uk−N~s

N

� �
, υN
�

+ IN gk − IN~g
k, υN

� �
:

ð43Þ

According to (37) and using the Hölder inequality and
Young’s inequality, we derive that

IN f 2uk−1N − uk−2N , uk−N~s
N

� �
− IN f 2~uk−1N − ~uk−2N , ~uk−N~s

N

� �
, υN

� �
≤ C L 2ηk−1N − ηk−2N

��� ��� + η
k−N~s
N

��� ���� �
υNk k

≤
ε

2CL
2 2ηk−1N − ηk−2N

��� ���2 + ε

2CL
2 η

k−N~s
N

��� ���2 + 1
2ε υNk k2

≤ 4εCL2 ηk−1N

��� ���2 + εL2 ηk−2N

��� ���2 + ε

2CL
2 ηk−N~s

N

��� ���2
+ 1
2ε υNk k2,

IN gk − IN ~gk, υN
� �

≤
ε

2C gk − ~gk
��� ���2 + 1

2ε υNk k2:
ð44Þ

Then, (43) becomes

〠
m

r=0
qrD

βr
τ η

k
N , υN

 !
+ A ηkN , υN
� �

≤
1
ε

υNk k2 + 4εCL2 ηk−1N

��� ���2 + εL2 ηk−2N

��� ���2
+ ε

2CL
2 ηk−N~s

N

��� ���2 + εC
2 gk − ~gk
��� ���2:

ð45Þ

Taking υN = ηkN and using Lemma 11 and (27), we can
deduce that

〠
m

r=0

qr
2 Dβr

τ ηkN

��� ���2 + ηj j2α/2

≤
1
ε

ηkN

��� ���2 + 4εCL2 ηk−1N

��� ���2 + εL2 ηk−2N

��� ���2
+ ε

2CL
2 ηk−N~s

N

��� ���2 + εC
2 gk − ~gk
��� ���2,

ð46Þ

namely,

〠
m

r=0
qrD

βr
τ ηkN

��� ���2 ≤ 2
ε

ηkN

��� ���2 + 8εCL2 ηk−1N

��� ���2 + 2εL2 ηk−2N

��� ���2
+ εCL2 η

k−N~s
N

��� ���2 + εC gk − ~gk
��� ���2:

ð47Þ
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By means of Lemma 12 and since ε > 0, there exists a
positive constant τ∗ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm/ð2Γð2 − βmÞ2/εÞβm

p
; when τ < τ∗,

we have

ηkN

��� ���2 ≤ 2εCtβm
k

qmΓ 1 + βmð ÞEβm
2μtβm

k /qm
� �

〠
M

k=1
gk − ~gk
��� ���2, ð48Þ

with μ = 2/ε + ð8CεL2/ðaβm
0 − aβm

1 ÞÞ + ð2CεL2/ðaβm1 − aβm
2 ÞÞ +

ðCεL2/ðaβmNs−1 − aβm
Ns
ÞÞ. Thus, the scheme is unconditionally

stable.☐

5.2. Convergence Analysis. In this section, we investigate the
convergence of the fully discrete scheme (38) using error
estimation.

Theorem 14. Let fukgMk=−Ns
be the exact solution of equation

(1) and fukNg
M
k=−Ns

be the solution of (38). Suppose that
C
0D

βr
t u ∈ L

∞ð0, T ;Hα/2
0 ðΩÞ ∩HsðΩÞÞ, u ∈ L∞ð−s, T ;HsðΩÞÞ;

we have

uk − ukN
��� ���

α/2
≤ C N α/2ð Þ−s +N−r + τ2−βm

� �
,  1 ≤ k ≤M,

ð49Þ

where C is independent of N and τ:

Proof. Denote uk − ukN = ekN = ðuk − πα/2,0
N ukÞ + ðπα/2,0

N uk −
ukNÞ= Δ ~ekN + êkN . The weak formulation of equation (1) is

〠
m

r=0
qr

C
0D

βr
t u

k, υN

 !
+ A uk, υN
� �

= f uk, uk−N~s

� �
, υN

� �
+ gk, υN
� �

:

ð50Þ

Subtracting (38) from (50) and owing to the definition of
orthogonal projection, the error equation satisfies

〠
m

r=0
qrD

βr
τ êkN , υN

 !
+ A êN , υNð Þ=Δ Rk

1 + Rk
2 + Rk

3 + Rk
4, ð51Þ

where

Rk
1 = IN f uk, uk−N~s

� �
− IN f 2uk−1N − uk−2N , uk−N~s

N

� �
, υN

� �
,

Rk
2 = f uk, uk−N~s

� �
− IN f uk, uk−N~s

� �
, υN

� �
,

Rk
3 = 〠

m

r=0
qr Dβr

τ π
α/2,0
N uk−C

0D
βr
t u

k
� �

, υN

 !
,

Rk
4 = gk − INg

k, υN
� �

:

ð52Þ

We next estimate the right-hand terms Rk
1, R

k
2, R

k
3, and R

k
4.

For the first term Rk
1,

Rk
1 = IN f uk, uk−N~s

� �
− IN f 2uk−1 − uk−2, uk−N~s

� �
, υN

� �
+ IN f 2uk−1 − uk−2, uk−N~s

� ��
− IN f 2uk−1N − uk−2N , uk−N~s

N

� �
, υN
�
=Δ Rk

11 + Rk
12:

ð53Þ

By applying the Taylor expansion, the following holds:

f uk, uk−N~s

� �
= f 2uk−1 − uk−2, uk−Ns

� �
+ uk − 2uk−1 + uk−2
� �

f ′1 ξ, uk−N~s

�
= f 2uk−1 − uk−2, uk−N~s

� �
+~cuτ2:

ð54Þ

Furthermore, by means of the Hölder inequality and Young’s
inequality, we have

Rk
11 ≤ IN f uk, uk−N~s

� �
− IN f 2uk−1 − uk−2, uk−N~s

� ���� ��� υNk k
≤ C f uk, uk−N~s

� �
− f 2uk−1 − uk−2, uk−N~s

� ���� ��� υNk k

≤
ε

2~cuτ
4 + 1

2ε υNk k2:
ð55Þ

According to (37), we can deduce that

Rk
12 ≤ LC 2ek−1N − ek−2N

��� ��� + ek−N~s
N

��� ���� �
υNk k

≤ LC 2êk−1N − êk−2N

��� ��� + êk−N~s
N

��� ����
+ 2~ek−1N −~ek−2N

��� ��� + ~ek−N~s
N

��� ���� υNk k

≤
8ε
2 CL2 êk−1N

��� ���2 + 2ε
2 CL2 êk−2N

��� ���2
+ ε

2 L
2 êk−N~s

N

��� ���2 + 8ε
2 CL2 ~ek−1N

��� ���2
+ 2ε

2 CL2 ~ek−2N

��� ���2 + ε

2CL
2 ~ek−N~s

N

��� ���2 + 1
2ε υNk k2:

ð56Þ

Moreover, owing to Lemmas 6 and 7, the following holds:

~ek−1N

��� ���2 ≤ C
C1

Nα−2s uk−1
��� ���2

s
, ~ek−2N

��� ���2
≤

C
C1

Nα−2s uk−2
��� ���2

s
, ~ek−N~s

N

��� ���2
≤

C
C1

Nα−2s uk−N~s

��� ���2
s
:

ð57Þ
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Then, (56) becomes

Rk
12 ≤ 4εCL2 êk−1N

��� ���2 + εCL2 êk−2N

��� ���2 + ε

2CL
2 êk−N~s

N

��� ���2
+ C
C1

Nα−2s uk k2L∞ −s,T ;Hs Ωð Þð Þ +
1
2ε υNk k2:

ð58Þ

Substituting (55) and (58) into (53), we can derive that

Rk
1 ≤

1
ε

υNk k2 + 4εCL2 êk−1N

��� ���2 + εCL2 êk−2N

��� ���2
+ ε

2CL
2 êk−N~s

N

��� ���2 + C
C1

Nα−2s uk k2L∞ −s,T ;Hs Ωð Þð Þ +
ε

2~cuτ
4:

ð59Þ

For the second term Rk
2, by means of the Hölder inequal-

ity, the following holds:

Rk
2 ≤

ε

2CN
−2r uk k2L∞ −s,T ;Hs Ωð Þð Þ +

1
2ε υNk k2: ð60Þ

For the third term Rk
3, the following holds:

Rk
3 = 〠

m

r=0
qr Dβr

τ π
α/2,0
N uk − C

0D
βr
t π

α/2,0
N uk

� �
, υN

 !

+ 〠
m

r=0
qr

C
0D

βr

t π
α/2,0
N uk−C

0D
βr
t u

k
� �

, υN

 !

= πα/2,0
N 〠

m

r=0
qr Dβr

τ uk−C
0D

βr
t u

k
� �

, υN

 !

− 〠
m

r=0
qr

C
0D

βr
t ~e

k
N , υN

 !
=Δ Rk

31 + Rk
32:

ð61Þ

Using (12) and the Hölder inequality, the following holds:

Rk
31 ≤

ε

2〠
m

r=0
qr πα/2,0

N Dβr
τ uk−C

0D
βr
t u

k
� ���� ���2 + 1

2ε υNk k2

≤
ε

2C〠
m

r=0
qr Dβr

τ uk − C
0D

βr

t u
k

� ���� ���2 + 1
2ε υNk k2

≤
ε

2C1,uτ
4−2βm + 1

2ε υNk k2:

ð62Þ

Furthermore, according to Lemma 2, we have

Rk
32 ≤

ε

2CN
α−2s 〠

m

r=0
qr

C
0D

βr

t u
k

��� ���2
s
+ 1
2ε υNk k2

≤
ε

2CN
α−2s 〠

m

r=0
qr

C
0D

βr

t u
��� ���2

L∞ −s,T ;Hs Ωð Þð Þ
+ 1
2ε υNk k2:

ð63Þ

Thus, (61) becomes

Rk
3 ≤

ε

2CN
α−2s 〠

m

r=0
qr

C
0D

βr
t u

��� ���2
L∞ −s,T ;Hs Ωð Þð Þ

+ ε

2C2,uτ
4−2βm + 1

ε
υNk k2:

ð64Þ

For the fourth term Rk
4, the following holds by invoking

Remark 9:

Rk
4 ≤

ε

2CN
α−2r uk k2L∞ −s,T ;Hr Ωð Þð Þ +

1
2ε υNk k2: ð65Þ

Substituting (59), (60), (64), and (65) into (51), we can
infer that

〠
m

r=0
qrD

βr
τ êkN , υN

 !
+ A êN , υNð Þ

≤
5
2ε υNk k2 + 4εCL2 êk−1N

��� ���2 + εCL2 êk−2N

��� ���2
+ ε

2CL
2 êk−N~s

N

��� ���2 + ~G ,

ð66Þ

where

~G = ε~CNα−2s 〠
m

r=0
qr

C
0D

βr
t u

��� ���2
L∞ 0,T ;Hs Ωð Þð Þ

+ uk k2L∞ −s,T ;Hs Ωð Þð Þ

 !

+ ε~CN−2r uk k2L∞ −s,T ;Hr Ωð Þð Þ + ε~Cuτ
4−2βm :

ð67Þ

Taking υN = êkN in (66) and applying Lemma 11, we can
conclude that

〠
m

r=0

qr
2 Dβr

τ êkN
��� ���2 + êkN

��� ���2
α/2

≤
5
2ε êkN
��� ���2 + 4εCL2 êk−1N

��� ���2 + εCL2 êk−2N

��� ���2
+ ε

2CL
2 êk−N~s

N

��� ���2 + ~G ,

ð68Þ

namely,

〠
m

r=0

qr
2 Dβr

τ êkN
��� ���2 ≤ 5

ε
êkN
��� ���2 + 8εCL2 êk−1N

��� ���2 + 2εCL2 êk−2N

��� ���2
+ εCL2 êk−N~s

N

��� ���2 +G ,

ð69Þ
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with G = 2~G . By means of Lemma 12 and since ε > 0, there
exists a positive constant τ∗ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm/ð2Γð2 − βmÞ10/εÞβm

p
; when

τ < τ∗, we have

êkN
��� ���2 ≤ 2Gtβm

k

qmΓ 1 + βmð ÞEβm

2μtβm
k

qm

 !
, ð70Þ

with μ = 10/ε + ð16εCL2/ðaβm0 − aβm
1 ÞÞ + ð4CεL2/ðaβm

1 − aβm
2 ÞÞ

+ ð2CεL2/ðaβm
N~s−1 − aβm

N~s
ÞÞ. Thus, the scheme is uncondition-

ally convergent. Finally, by means of the triangle inequality
and Lemma 6, we complete the proof of (49).☐

6. Numerical Experiments

Some numerical experiments are performed here to clarify
the convergence orders of the considered scheme in time
and space. We also show the impact of time- and space-
fractional orders on the behaviour of the dynamics for the
solution of nonlinear delay reaction diffusion equations. To
examine the temporal and spatial convergence orders sepa-

rately, the orders of convergence in time and space shall be
determined from the L2-error norms defined as

Order = ln e N ,M1ð Þk k/ e N ,M2ð Þk kð Þ
ln M1/M2ð Þ , ð71Þ

where M1 ≠M2.

Example 15. Consider the nonlinear delay reaction-diffusion
problem

〠
Q

r=1

∂βr u

∂tβr
x, tð Þ = ∂αu

∂ xj jα x, tð Þ − 2u x, tð Þ + u x, t − 1:5ð Þ
1 + u2 x, t − 1:5ð Þ

+ g x, tð Þ, x ∈ 0, 1ð Þ, t ∈ 0, 1ð �:
ð72Þ

We choose the fractional orders βr = ð2Q + r − 5Þ/3Q.
The source function gðx, tÞ is given such that problem (72)
has the exact solution tβ5+1x2ð1 − xÞ2:

Table 1: The L2-errors and their convergence orders versus τ and α at N = 50 for Example 15.

τ
α = 1:1 α = 1:5 α = 1:9

Error Order Error Order Error Order

1.5/50 5:057 × 10–5 — 4:692 × 10–5 — 4:163 × 10–5 —

1.5/100 1:927 × 10–5 1.392 1:989 × 10–5 1.238 1:783 × 10–5 1.223

1.5/150 1:094 × 10–5 1.395 1:192 × 10–5 1.262 1:086 × 10–5 1.224

1.5/200 7:327 × 10–6 1.396 8:283 × 10–6 1.267 7:592 × 10–6 1.244

1.5/250 5:365 × 10–6 1.396 6:226 × 10–6 1.279 5:732 × 10–6 1.259

1.5/300 4:159 × 10–6 1.397 4:933 × 10–6 1.277 4:560 × 10–6 1.255

2–β5 — 1.333 — 1.333 — 1.333

–2

–3

–4

–5

lo
g 1

0 
(E

rr
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 (u
))
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Figure 1: Convergence order in space direction for different values of α at τ = 1:5/300.
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In Table 1, we list the L2-errors and corresponding con-
vergence orders with α = 1:1, 1:5, 1:9 and N = 50 for Q = 5.
We can see that these results confirm the expected theoreti-
cal order convergence in time. The convergence orders in
space are depicted for different values of α and β at M =
500 in Figure 1. All the convergence results are in agreement
with the theoretical results.

Example 16. We consider the following fractional problem,
where the dynamics of the solution is very interesting and
the exact solution is unknown:

〠
8

r=1

∂βr u

∂tβr
x, tð Þ = ∂αu

∂ xj jα x, tð Þ + u x, tð Þ 1 − u x, tð Þð Þ

� 1 + u x, t − 1:5ð Þð Þ,  x ∈ a, bð Þ, t ∈ 0, 3ð �,
ð73Þ

with the initial value uðx, 0Þ = e−2x
2
and βr = r/10:

Figures 2 and 3 show the profiles of the numerical solu-
tion with the fractional-order parameters α = 1:2, 1:5, 1:8
with N = 100 and τ = 1:5/500. We can observe that the
fractional-order parameter α affects the shape of the solu-
tions. We can say that the fractional-order parameters can
be used in physics to modify the shape of waves without
changing the nonlinearity and dispersion effects of the frac-
tional nonlinear problems.

7. Conclusion and Remarks

We have constructed and analyzed a novel explicit finite dif-
ference/Galerkin–Legendre spectral scheme for the nonlin-
ear multiterm Riesz space and Caputo time fractional
reaction-diffusion equation with delay. The problem was
first approximated by the L1 difference method on the tem-
poral direction, and then, the Galerkin–Legendre spectral
method was applied on the spatial discretization. Using an
appropriate form of discrete fractional Grönwall inequality,
the stability and the convergence of the fully discrete scheme
were investigated. We have proven that the proposed
method is stable and has a convergent order 2 − βm in time
and an exponential rate of convergence in space. High-
order difference schemes can be handled to raise the tempo-
ral convergence order. This can be done by using the Alikha-
nov scheme [46], and it can be designed theoretically and
numerically easily as shown in our context. Two numerical
examples are given to show that the numerical results are
consistent with theoretical ones in the case of the smooth-
ness of the solution with respect to time and space.
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