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a b s t r a c t

A new phase fitted Runge–Kutta pair of orders 8(7) which is amodification of a well known
explicit Runge–Kutta pair for the integration of periodic initial value problems is presented.
Numerical experiments show the efficiency of the new pair in a wide range of oscillatory
problems.
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1. Introduction

For the numerical solution of the initial value problem

y′
= f (x, y), y(x0) = y0 ∈ ℜ

m, x ∈ [x0, xe] (1)

where f : ℜ×ℜ
m

→ ℜ
m, the Explicit Runge–Kutta (RK) pairs are widely used. Such pairs can be presented by the extended

Butcher tableau [1,2]:
c A

b
b̂

with bT , b̂T , c ∈ ℜ
s and A ∈ ℜ

s×s is strictly lower triangular. Such methods advance the solution from xn to xn+1 = xn + hn
using the following two approximations at each step, yn+1, ŷn+1 to y(xn+1) of orders p and p − 1 respectively,

yn+1 = yn + hn

s
i=1

bifni

∗ Correspondence to: 26 Menelaou Street Amfithea-Paleon Faliron, GR-175 64 Athens, Greece.
E-mail address: tsimos.conf@gmail.com (T.E. Simos).
URLs: http://users.ntua.gr/tsitoura (Ch. Tsitouras), http://users.teiath.gr/ifamelis (I.Th. Famelis).

1 Part time.

http://dx.doi.org/10.1016/j.cam.2017.02.030
0377-0427/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2017.02.030
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2017.02.030&domain=pdf
mailto:tsimos.conf@gmail.com
http://users.ntua.gr/tsitoura
http://users.ntua.gr/tsitoura
http://users.ntua.gr/tsitoura
http://users.ntua.gr/tsitoura
http://users.ntua.gr/tsitoura
http://users.teiath.gr/ifamelis
http://users.teiath.gr/ifamelis
http://users.teiath.gr/ifamelis
http://users.teiath.gr/ifamelis
http://users.teiath.gr/ifamelis
http://dx.doi.org/10.1016/j.cam.2017.02.030


Ch. Tsitouras et al. / Journal of Computational and Applied Mathematics 321 (2017) 226–231 227

and

ŷn+1 = yn + hn

s
i=1

b̂ifni,

where

fni = f


xn + cihn, yn + hn

i−1
j=1

aijfnj


for i = 1, 2, . . . , s. Using this embedded formwe can obtain an estimate En+1 =

yn+1 − ŷn+1
 of the local truncation error

of the p−1 order formula. Then the next step of the numerical solution can be computed using a step-size control algorithm

hn+1 = 0.9 · hn ·


TOL
En+1

1/p

, (2)

where TOL being the requested tolerance. If En+1 > TOL the step hn computed to advance the approximation of the solution
from xn to xn+1 is rejected and the same formula (2) is assumed to recompute the new smaller current step. In (2) the 0.9 is
a safety factor that is used so that the error will be acceptable the next time with high probability. For more details on the
implementation of these types of step size policies see [2,3].

2. Basic theory

When a RK method is applied to solve the test problem

y′
= iωy, ω ∈ ℜ, i =

√
−1, (3)

we are led to the numerical scheme

yn+1 = P (iωhn) yn,

hn = xn+1 − xn, where the function P (iv) = P (iωh) satisfies the relation

P (iv) = 1 + ivb (I − ivA)−1 e =

∞
j=0

tj (iv)j , (4)

and for j ≥ 1, tj = bAj−1e, t0 = 1 and e = [1, 1, . . . , 1] ∈ ℜ
s [4]. The quantities tj depend only on the coefficients of the

method. For explicit methods (e.g. A strictly lower triangular), the above sum in the determination of P (iv) is finite and j
runs from 0 to s.

Following [5],we define the phase-lag (or dispersion) order of a RKmethod as the order of approximation of the argument
of the exponential function by the argument of P along the imaginary axis. Equivalently, the phase-lag order of a method is
q, whenever δ (v) = O


vq+1


, for δ (v) = v − arg (P (iv)). We define also, the imaginary stability interval of a RK method

II = (0, v0) by the relations |P (iv)| < 1 and |P (i (v0 + θ))| > 1, for every v ∈ II and every suitably small positive θ . When
a method has a non-vanishing imaginary stability interval then it is called dissipative.

Even though in the definition for a RKmethod the phase-lag property is based on the solution of a special problem (3), the
numerical tests presented in [6,4] strongly indicated that the RKpairs of high phase-lag order exhibit a remarkable numerical
performance on a much wider class of test problems. Especially for a certain class of initial value problems (as those whose
solutions are described by free oscillations or free oscillations of low frequency with forced oscillations of high frequency
superimposed, over long integration intervals), one should use pairs of methods of high phase-lag order with minimized
leading truncation error coefficients instead of pairs of the same algebraic order which attain the minimal algebraic order
and phase-lag order allowed by the number of method’s stages.

3. Methods with known frequency

Gautschi [7] has been the first who tried to fit a method to a set of linearly independent trigonometric functions. Since
then a lot of methods trying to do something similar have been constructed. Here we will exploit the knowledge of v = ωh
in the direction of the ideas presented in the previous section.

We observe that

P (iv) = Q (v) + iR (v)

=

1 − t2v2

+ t4v4
− t6v6

± · · ·

+ i


v − t3v3

+ t5v5
− t7v7

± · · ·


which is a finite series for explicit methods, as we have mentioned.
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Requiring δ (v) = v − arg (P (iv)) = 0 and tan v =
R(v)

Q (v)
then

Q (v) tan v = R (v)

holds, restricting just one tji to some expression of v. A new method can be derived by solving all the order conditions and
the equation for the restricted tj. As the number of stages of a method is greater than its order (e.g. s > p) when p > 4, there
is always some free tj, j > p to solve for. Such a method is characterized as a phase-fitted method and these ideas where
first introduced by Raptis and Simos [8].

In the next sectionwe construct explicit phase-fitted RK formulas of orders 8(7) with 13 stages andwe derive coefficients
for a phase fitted pair based on a classical similar pair of Prince and Dormand [9].

4. Phase-fitted Runge–Kutta pairs of orders 8(7)

For the popular family that PD8(7) [9] belongs to we set c12 = 1, a13,12 = 0 and when solving the set of order conditions
we have the following free parameters c2, c5, c6, c7, c8, c10, c11, a8,7, b13, b̂12, b̂13 to use for theminimization of the principal
local truncation error term. For the classical DP8(7) the choice of the parameters set is c2 =

1
18 , c5 =

5
16 , c6 =

3
8 , c7 =

59
400 ,

c8 =
93
200 , c10 =

13
20 , c11 =

1201146811
1299019798 , a8,7 = −

180193667
1043307555 , b13 =

1
4 , b̂12 =

2
45 , b̂13 = 0.

For such methods (4) takes the form

P = Q (v) +
√

−1R (v)

=


1 −

1
2
v2

+
1
24

v4
−

1
720

v6
+

1
40320

v8
− t10v10 + t12v12


+

√
−1


v −

1
6
v3

+
1

120
v5

−
1

5040
v7

+ t9v9
− t11v11


and for phase-fitted methods we require v = arg (P (iv)). So we solve

Q (v) tan v = R (v)

for a8,7 to get its expressionwith respect to v and tan (v). Asking a high precision least squares approximation of the solution
over a dense uniform grid of the interval [0, 1.5] we finally get

a8,7 =
C(v)

D(v)

where

C(v) = −0.19781108078634084 − 0.164050909125528499v2

+ 0.042578310088756321v4
− 0.002300513610963998v6

+ 0.000033467244551879287v8
− 7.8661142036921924 · 10−8v10

and

D(v) = 1 − 0.296457092123567400v2
+ 0.0015793885907465726v4

− 0.00018913011771688527v6
+ 0.000017089234650765179v8

− 1.2705211682518626 · 10−7v10.

The behavior of a8,7 for v ∈ [0, 1.5] is presented in Fig. 1. Now, only the following coefficients of themethod depend on a8,7:

a8,1 = 0.026876256 + 0.0576576a8,7,
a8,4 = 0.22464336 − 0.944944a8,7,
a8,5 = 0.000369024 − 0.2061696a8,7,
a8,6 = 0.21311136 + 0.093456a8,7,
a9,1 = 0.07239997637512857 + 0.01913119863380767a8,7,
a9,4 = −0.688400520601143 − 0.3135390887207368a8,7,
a9,5 = −0.688400520601143 − 0.3135390887207368a8,7,
a9,6 = −0.17301267570583073 − 0.06840852844816077a8,7,
a9,7 = 0.1440060555560846 + 0.031009360422930017a8,7,
a9,8 = 0.9982362892760762 + 0.33180705811215994a8,7,
a10,1 = 0.16261514523236525 − 0.12125171966747463a8,7,
a10,4 = −2.1255544052061124 + 1.9871809612169453a8,7,
a10,5 = −0.216403903283323 + 0.43356675517460624a8,7,
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Fig. 1. The a8,7(v) for v ∈ [0, 1.5].

a10,6 = −0.060417230254934076 − 0.1965343807796979a8,7,
a10,7 = −0.060417230254934076 − 0.1965343807796979a8,7,
a10,8 = 2.4846281621788395 − 2.102961615944379a8,7,
a11,1 = −1.0320124180911034 + 1.061943768952537a8,7,
a11,4 = 13.666683232895137 − 17.40407843561103a8,7,
a11,5 = 0.25990355211486116 − 3.797253476860588a8,7,
a11,6 = −5.759316475814002 + 1.7212824826428488a8,7,
a11,7 = −12.822511612651839 + 18.41810566087623a8,7,
a12,1 = 0.2478349764611783 − 0.06383934946543009a8,7,
a12,4 = −4.593782880309185 + 1.046256005127882a8,7,
a12,5 = −0.39566692537411896 + 0.22827403748244698a8,7,
a12,6 = −3.0673550479691665 − 0.10347586863902129a8,7,
a12,7 = 5.386688702227177 − 1.1072148245058775a8,7,
a13,1 = 0.7332242174431163 − 0.5164807626867616a8,7,
a13,4 = −10.196728938160977 + 8.464545832921925a8,7,
a13,5 = −0.43865244706547707 + 1.846809999910238a8,7,
a13,6 = 0.5693856884667226 − 0.8371528845746959a8,7,
a13,7 = 10.52865228002416 − 8.957722185570706a8,7,

whereas, the other coefficients are the same ones of classical PD8(7) pair. It is obvious that the computational overhead for
evaluating these coefficients is negligible.

5. Numerical experiments

The new phase fitted pair of order 8(7), which we call NEW8(7)v, was based on the classical Runge–Kutta pair of orders
8(7) due to Prince and Dormand [9], in this work called PD8(7), and so we chose this method for the comparison of the new
method. The pairs were run for tolerances 10−3, 10−4, . . . , 10−9 in variable step-size and measure the − log10(end-point
error) at y and the total number of function evaluations needed for the following well known problems from the literature
problems.
The model equation

y′′
= −25y,

with y (0) = 1, y′ (0) = 0 for x ∈ [0, 20π ]. Its exact solution is y (x) = cos 5x. For this problem ω = 5.
Bessel equation

y′′
= −


100 +

1
4x2


y,
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Table 1
The model equation results.

Tolerance 10−3 10−4 10−5 10−6 10−7 10−8 10−9

Correct digits
PD8(7) 2.08 3.00 4.08 5.22 6.38 7.54 8.69
NEW8(7)v 12.45 13.11 12.40 13.70 12.49 13.06 13.07

Fun. Ev.
PD8(7) 1781 2418 3211 4264 5668 7540 10036
NEW8(7)v 3112 2924 3640 4654 6032 7891 10387

Table 2
The Bessel equation results.

Tolerance 10−3 10−4 10−5 10−6 10−7 10−8 10−9

Correct digits
PD8(7) 2.86 3.87 4.48 5.51 6.73 7.94 9.12
NEW8(7)v 7.49 8.03 9.83 10.43 11.48 12.75 13.05

Fun. Ev.
PD8(7) 2429 3754 3282 4186 5577 7436 9932
NEW8(7)v 3185 3264 3627 4628 5993 7865 10309

Table 3
The hyperbolic PDE results.

Tolerance 10−3 10−4 10−5 10−6 10−7 10−8 10−9

Correct digits
PD8(7) 2.20 2.96 3.93 5.18 5.67 6.63 7.73
NEW8(7)v 2.55 3.73 4.99 6.38 8.03 9.00 10.07

Fun. Ev.
PD8(7) 5382 5486 5850 7384 10335 13897 18512
NEW8(7)v 6187 6801 7051 9229 14921 16406 20709

with initial conditions y (1) = −0.2459357644513483,

y′ (1) = −0.5576953439142885, for x ∈ [1, 32.59406213134967].

The theoretical solution of this problem is y(x) =
√
xJ0 (10x). The 100th zero of this problem was observed for

x = 32.59406213134967, [10]. We used ω = 10 for derivation of the coefficients of phase-fitted methods.
Hyperbolic problem

The hyperbolic PDE,

ϑu
ϑx

=
ϑu
ϑr

, u (x, 0) = 0, u (0, r) = sinπ2r2,

0 ≤ r ≤ 1, x ≥ 0

is semi-discretized by symmetric differences (with 1r = 1/50) to the system of ODEs
y′

1
y′

2

y′

50

 =
1
2

·
1

(1/50)


0 −1
1 0 −1

1 0 −1
−1 4 −3

 ·


y1
y2

y50

 .

In [5] it was found that the 500th zero of the 20th component in the above equation was reached for x = 33.509996948.
So we integrated the methods to that point. As, there is not some dominant frequency for this problem, we use a rough
estimation of ω = 50 which is not far from the largest eigenvalue of the problem.
Nonlinear problem

y′′
= −100y + sin y,

with y (0) = 0, y (0) = 1 for x ∈ [0, 20π ]. The analytic solution is not known but with a quadruple precision integration at
high tolerance it can be found that y (20π) = 3.92823991 · 10−4, [11]. We used ω = 10 for this problem.

Most of the problems we choose have oscillatory solutions that are not described by trivial trigonometric solutions. The
results over the problems are presented in Tables 1–4 and reveal the superiority of the proposed phase fitted method in a
competitive computational cost.
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Table 4
The nonlinear problem results.

Tolerance 10−3 10−4 10−5 10−6 10−7 10−8 10−9

Correct digits
PD8(7) 2.75 3.45 4.58 5.40 6.53 7.71 8.89
NEW8(7)v 4.83 6.02 7.02 8.09 9.12 10.02 11.32

Fun. Ev.
PD8(7) 3706 4670 7050 7799 10374 13884 18551
NEW8(7)v 5534 7013 8448 10187 12649 14689 19318

6. Conclusion

Anewphase-fitted pair of orders 8(7) is presented in this article. The numerical experiments on problemswith oscillatory
solutions indicate that the new phase fitted pair is appropriate for initial value problems with oscillatory solutions.
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