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Spectral Reflectance Processing via Local
Wavelength-Direction Correlations
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Abstract— The spectral bidirectional reflectance distribution
function (BRDF) maps incident radiation of a surface to its
outgoing counterpart at different wavelengths. This function
plays a fundamental role in characterizing the various types of
earth surfaces. Due to its high dimensionality, the measurements,
analysis, and simulation of spectral BRDF are challenging.
In this letter, we introduce a new method for processing spectral
reflectance using the so-called data-adjacency, i.e., the correlation
between adjacent wavelengths and viewing directions. The results
show that the benefits of efficient representation, noise reduction,
and analysis capability can all be integrated to the data.

Index Terms— Remote sensing, spectroradiometers, wavelet
transforms.

I. INTRODUCTION

THE electromagnetic waves detected by the satellite
sensors are, in general, dependent on viewing and illu-

mination directions at different wavelengths. Such information
about the earth surface is encoded in the spectral bidirectional
reflectance distribution functions (BRDFs). The importance
of spectral BRDFs for remote sensing is fundamental [1].
Over decades, the remote sensing satellites have been built in
order to obtain the higher resolution in wavelength, enhanc-
ing the angular detection capabilities, e.g., the hyperspectral
and multi-angular satellites. Meanwhile, the earth radiation
estimation relies on modeling the spectral BRDFs of various
atmospheric, oceanic, and land components [2]–[4] via radia-
tive transfer simulations. From a computational perspective,
accurate spectral BRDF models are also needed as the bound-
ary conditions in radiative transfer.

Currently, many of the spectral BRDF models are either
theoretical or empirical [5]–[7], few are based on field and
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laboratory measurements. There are a few reasons for this.
First, the measurements are simply too costly for many of the
purposes compared to the theoretical models. Second, there is
a lack of systematic or efficient ways to convert the measured
data set (usually incomplete) to applicable models [8]. In this
letter, we present a new approach aiming to overcome some of
the inefficiency in dealing with the spectral reflectance data,
integrating the benefits of efficient representation, and analysis
capability as well as noise reduction.

II. FOLD-AND-UNFOLD SCHEME

By definition, the spectral BRDFs cannot be directly
measured, the term “BRDF data” refers to derived values from
a measurable quantity called bidirectional reflectance factor
(BRF) [9]. Considering its most general case, the spectral
BRDF for a particular surface is dependent on the incident and
outgoing directions, wavelength, and polarization state of the
electromagnetic waves. Making full measurements and storing
them in high resolution would be incredibly costly [10]. In this
section, the so-called fold-and-unfold scheme is presented for
dealing with the spectral BRDF data. Note that due to its
fundamental role in scientific and engineering applications [1],
[11], the method presented here could potentially be extended
to other contexts, in addition to its applications in remote sens-
ing, radiative transfer, and earth albedo estimation. The data
applied in this letter are from a comprehensive spectral BRF
library built by the Finnish Geospatial Research Institute (FGI)
over many years. This data set provides various earth’s surface
reflectance properties, including snow, vegetation, sand, and
so on. A short description of our data source is attached in
Appendix D.

A. Wavelet-Based Representation

The BRDFs often show peaked values at certain directions,
which could be caused by specular reflections or other
single- or multiple-scattering mechanisms. This makes some
of the conventional analytical tools such as spherical har-
monics less useful. It is a common practice of combining
the Dirac delta function and spherical harmonics to represent
BRDF. Nevertheless, this way of representation is not very
natural [12]–[14]. The spherical harmonics provide global rep-
resentation of a function and, therefore, local irregularity could
lead to global distortion. In addition, the continuity between
the sharp and diffuse components cannot be properly handled
by simply combining the Dirac delta function and spherical
harmonics. In this letter, we turn to more practical tools
known as spherical wavelets [15]–[17]. The spherical wavelets
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Fig. 1. Parameterizing the reflectance via data adjacency. The vectors indicate
the moving directions of the detector on the hemisphere.

Fig. 2. Adjacency parameterization of a sand surface spectral BRDF sample
from the FGI BRDF library. The color maps to the reflectance data.

provide local support on the surface of a sphere, which means
that local irregularity will not lead to global distortion [18].
Moreover, the wavelet-based representation is equipped with
multiresolution analysis (MRA), which is useful for analysis
and representation of the data. More technical details about the
spherical wavelets and and their implementations are described
in [15], [16], and [18]–[20]. A short introduction to this
technique is also attached in the appendices.

B. Parameterization via Data Adjacency

The basic idea of representing the spectral BRDFs more
efficiently is to take advantage of the correlation between
all neighboring quantities, in both wavelength and direction.
Accordingly, we propose a nonmetric-parameterization of
the spectral BRDF. Specifically, the direction hemisphere is
parameterized to a line of adjacent directions in accordance
with measurement, as displayed in Fig. 1. Mathematically,
this is equivalent to mapping a spherical surface to a line,
i.e., S2 → R. Obviously, the metric property is no longer
preserved. The resulting parameterization of the spectral
data become S2 × R → R × R for a fixed incident
direction (a full representation is S2 × S2 × R, including all
possible incident directions). The adjacent detection angles
are composed of the directions in neighboring meridian
planes. They are in line with the detector’s movement;
hence, they have local spatial correlations, as displayed in
Fig. 2. They are in line with the detector’s movement; hence,
they have local spatial correlations.

In order to fully utilize the correlations between wavelength
and direction, the data are then mapped to a spherical surface,
i.e., S2 × R → R × R → S2. This mapping could be just a
linear interpolation of azimuthal and zenith angles. It should
be noted that this mapping is not strictly required in order to
obtain the benefits of denoising and efficient representation.
However, there are some extra benefits brought up by this
spherical mapping. First, the compression efficiency is higher
after mapping the data to a spherical surface. This is because
there is no boundary on the spherical surface and the local cor-
relations will be optimally explored. Second, the BRDF data
have naturally a spherical structure, and they are inherently
connected with spherical coordinates. Third, direct computing
and analysis of the data could be more conveniently achieved
by representing the data on the spherical surface.

C. Multi-Resolution Processing

This adjacency-based parameterization ensures that each
data point on the surface has certain degree of correlation
with the adjacent points, and this provides a playground for
spherical wavelet multi-resolution analysis [21]. Now, the data
can be seen as a function on the sphere f . The next step is to
perform spherical wavelet transform in order to decompose f

f =
∑

k∈K 0

cJ0
k φ̃

J0
k +

J∑

j=J0

∑

m∈M j

d j
mψ̃

j
m (1)

where j is the index of the decomposition level, J0 refers to
the coarsest level, J refers to the finest level, φ̃ J0

k is the dual
scaling function at the coarsest level, ψ̃ j

m is the dual wavelet
function at level j , cJ0

k are the coefficients giving the coarsest
representation of f , and d j

m are the wavelet coefficients of each
level. The above expression is, indeed, a recovery formula
of f , feeding the coefficients to construct the original data.
In order to obtain the coefficients for those basis functions,
one must perform the inner products with the scaling functions
and wavelet functions

cJ0
k = 〈

f, φ J0
k

〉
, d j

m = 〈
f, ψ j

m

〉
(2)

where the φ J0
k is the primal scaling function, and ψ j

m is the
primal wavelet function. Equations (1) and (2) correspond
to two processes, namely, the forward wavelet transform
and inverse wavelet transform. Many of the benefits can
be achieved by performing the forward and inverse wavelet
transforms, including obtaining multi-resolution spectral data,
noise reduction, and efficient representation.

D. Local Wavelength-Direction Correlations

At first glance, the parameterization seems to obscure the
angular distance between two data points. In fact, the para-
meterization trades the metric properties with adjacency; as
such, the local correlations of the spectral BRDF can be
optimally explored in order to obtain efficient representation.
There is no need to take in the real metric information for
wavelet transform, while the local correlations are crucial for
the performance of wavelet transform. As for the real angular
distances and coordinates, they can always be regained after
the forward and backward wavelet transforms. The wavelet
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Fig. 3. Global average error as a function of CC, defined as the ratio of
number of surviving coefficients to the number of original data points for the
whole spectral BRDF data.

transforms are built on different levels of triangulated geodesic
grids on the sphere, and they are essentially combinator-
ial. In this letter, we construct the multi-scale bases using
the Lifting Scheme [19], [20]. With the scheme, one could
start with a trivial base such as the Lazy-wavelet [15] and
incrementally obtain more performant bases. It includes three
basic processes, namely, the split, predict, update, and their
corresponding reverses [15].

III. RESULTS AND DISCUSSION

A. Effectiveness of Representation

As mentioned above, the basic idea is to map the spectral
BRDF data to a spherical surface to explore the local corre-
lations between wavelengths and directions. For most of the
points on the surface, the data tends to vary smoothly thanks to
the adjacency-based parameterization. We then use the Lifting
Scheme to perform the fast wavelet transform to obtain the
scaling function coefficients and wavelet coefficients. The next
step is to perform thresholding to the obtained coefficients,
i.e., keeping the large coefficients untouched and setting all
small ones to zeros. To construct the spectral data, we perform
the inverse wavelet transform using the thresholded coeffi-
cients. We define the compression coefficient (CC) as the ratio
of the number of nonzero coefficients to the number of original
data points. Therefore, a smaller CC value corresponds to a
higher efficiency of representation. As such, the whole fold-
and-unfold scheme can be described as follows:

S2 × R
adjacency−−−−−−⇀↽−−−−−−

metric
R × R � S2 FWT−−−⇀↽−−−

BWT
S2 (3)

where FWT and BWT denote the forward and backward
wavelet transforms, respectively, and the second operation
(R × R � S2) corresponds to the mixing of wavelength
and spatial information. With this folding and unfolding
strategies, a very small CC value can be obtained for the
whole spectral BRDF data. Fig. 3 displays the global average
error as a function of the CC value. As shown in the figure,
the global average error does not grow much until the CC
value reaches a very small number of 0.1%. In contrast
to the metric-preserving parameterization, there is no need
to perform wavelet-transform for each wavelength, and this
dramatically increases the effectiveness of representation.

B. Noise Reduction and Detail Extraction

It is well known to the experimentalist that the BRDF
measurement often comes with severe noise issues [11], [22].
With the wavelet transforms, efficient representation of the

Fig. 4. (Left) Spherical representation of the spectral reflectance data. (Right)
Noise reduction can be obtained by tuning the compression rate.

Fig. 5. Detail extraction across the spectrum.

data and noise reduction can be achieved at the same time.
This is done by controlling the global error while reducing the
number of nonzero coefficients. Fig. 4 displays the spherical
representation of reflectance data (left panel) and its noise
reduction (right panel) by controlling the global difference
around 3%.

As demonstrated in the appendix, the wavelet transform
is a process of separating coarse representation and local
details in the data. The details are represented by the wavelet
coefficients. If one subtracts the smoothed version of the data
from the original data, we will have the details of the data.
We call this process the detail extraction. Fig. 5 displays the
spectral difference distribution with a global average difference
of 3%. The detail extraction could be useful for detecting
some artifacts in the data. For example, the small peak at
wavelength around 1700 nm in Fig. 5 corresponds to a
transition of high-level noise to low-level noise in the original
data. In addition, as displayed in Fig. 5, the shortest and
longest wavelengths tend to have the largest detail, and this
is due to the adjacency-based parameterization. Because there
are no neighboring wavelengths for the shortest and longest
ones, the wavelet coefficients are much larger than those in
the middle.

C. Discussion

Based on the results presented, there are some implications
we would like to discuss here. First, in terms of representation,
local “coordinates” are more effective than global “coordi-
nates.” This effectiveness, more specifically, is with respect
to obtaining sparseness in the representation. As more and
more sensors are being manufactured and used to collect data,
obtaining sparseness and compressibility becomes more and
more important. Second, multi-scale processing is a very nat-
ural way of processing the reflectance data. As demonstrated in
this letter, by decomposing the signal into different scales and
exploring the connections between two nested scales, we can
obtain useful information such as noise level transition across
the spectrum.
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IV. CONCLUSION

In this letter, we present a novel approach for spectral
reflectance data processing based on the spherical wavelet
technique. The results show that the method integrates the ben-
efits of efficient representation, noise reduction, and analysis
capability to the data. We shall point out the characteristics
of the method more specifically. First, the reflectance is
parameterized in such a way that we can take advantage of
the correlations between neighboring wavelengths and direc-
tions at the cost of preserving the metric properties. Second,
the parameterization is in line with the detector’s movement,
and therefore, it provides a path for real-time processing.
The method is applied to the whole spectral data. There is
no need to represent the BRDF for each wavelength; hence,
the compressed data will not grow linearly with the number
of wavelengths. This could be very useful for high-spectral
resolution BRDF processing. Some future work is noted as
follows.

1) The Fold-Expand Scheme: As mentioned beforehand,
our current work is partly motivated by converting
a comprehensive spectral BRDF library to applica-
ble models. One direction is to develop a method to
“expand” the data from the incomplete measurements
in order to obtain a full S2 × S2 × R spectral BRDF
representation. We intended to apply the state-of-the-
art technique called compressive sensing [6], [23], [24],
which is in close relation to data compression methods.

2) Direct Computing and Analysis on S2: The
wavelength-direction correlations provide richer
information about the spectral characteristics than
noncorrelated ones. The scheme could be applied to
spectral characteristics learning and analysis. With
the spherical wavelet techniques, fast multi-resolution
analysis over the spectrum can be obtained. In addition,
we can incorporate real metric information for efficient
computing on S2.

APPENDIX A
SPHERICAL WAVELETS AND MULTI-RESOLUTION

PROCESSING

Spherical wavelets are constructed on the hierarchical geo-
desic grids on the sphere. These grids can be obtained by
subdivision of the zero-level grids, the icosahedron. The
multi-level discretization of a spherical surface naturally leads
to the multi-scale representation and analysis of a function
on the sphere. The bases for different scale representations
are called the scaling functions φ j

k , and the spherical wavelets
live in the complementing space between two nested scaling
function spaces. Mathematically, this relation can be expressed
as

L2 = V0 ⊕
∞⊕

j=0

W j (4)

where V0 denotes the coarsest scaling function space, and W j

is the wavelet function space indexed by decomposition level.
The function on the sphere f can, therefore, be represented
using the coarsest scaling functions and spherical wavelets

at different complementing spaces [as shown in (1)]. For
each space, the bases have their primal and dual counter-
parts, i.e., the primal/dual scaling functions and primal/dual
wavelets. They are biorthogonal bases. Biorthogonality leads
to lossless transform.

APPENDIX B
REFINEMENT RELATION AND WAVELET CONSTRUCTION

The central task of wavelet transform is to perform the
following operations iteratively:

∑

l∈K j+1

c j+1
l φ̃

j+1
l

forward−−−−−⇀↽−−−−−
backward

∑

k∈K j

c j
k φ̃

j
k +

∑

m∈M j

d j
mψ̃

j
m (5)

where the index sets K j and M j satisfy

K j+1
Split−−−⇀↽−−−

Merge
K j ∪ M j (6)

where decomposition level j decreases toward the forward
direction and increases toward the backward direction. The
wavelet coefficients will be spitted out via forward transform
and absorbed via backward transform. We use the following
refinement relations of scaling functions and the wavelet
construction formula:

φ̃
j
k = φ̃

j+1
k +

∑

m∈N j
k

h j
m,k φ̃

j+1
m (7)

ψ̃ j
m = φ̃ j+1

m −
∑

k∈A j
m

s j
k,m φ̃

j
k (8)

where N j
k and A j

m are two sets of indices being locally
correlated with k and m, respectively, and they satisfy

N j
k ⊂ M j , A j

m ⊂ K j . (9)

The refinement relation for scaling functions together with
the wavelet bases formula give their corresponding coefficient
relations, that is,

c j+1
m =

∑

k∈n j
m

c j+1
k h j

k,m + d j
m (10)

c j+1
k = −

∑

m∈a j
k

d j
ms j

m,k + c j
k (11)

where n j
m and a j

k are two sets of indices being locally
correlated with m and k, respectively, and they satisfy

n j
m ⊂ K j , a j

k ⊂ M j . (12)

APPENDIX C
WAVELET TRANSFORM VIA THE LIFTING SCHEME

By using the coefficient transform relations described above,
we will be able to perform the forward and backward wavelet
coefficient transforms. It is fast in such a way that the
computation could be in-place and only require minimum
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computational cost. The entire wavelet transform can now be
represented as follows:

{
c j+1

l

} split−−−⇀↽−−−
merge

{
c j+1

k

} ∪ {
c j+1

m

}
(13)

predict: d j
m=c j+1

m −∑

k∈n
j
m

c j+1
k h j

k,m

−−−−−−−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−−−−−−−
reverse predict: c j+1

m =∑

k∈n
j
m

c j+1
k h j

k,m +d j
m ,

{
c j+1

k

} ∪ {
d j

m

}
(14)

update: c j
k =∑

m∈a
j
k

d j
ms j

m,k+c j+1
k ,

−−−−−−−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−−−−−−−
reverse update: c j+1

k =− ∑

m∈a
j
k

d j
ms j

m,k+c j
k ,

{
c j

k

} ∪ {
d j

m

}
. (15)

The upper one is the forward transform, and the lower one is
the backward transform. The computations can be iteratively
carried out among many different levels. The filter h j

k,m

corresponds to the design of a predictor, and s j
m,k corresponds

to increasing the vanishing moments of wavelets.

APPENDIX D
FGI BRF LIBRARY

The examples of BRF measurements used in this letter
are taken from a large BRF library measured by the Finnish
Geodetic Institute Field Goniospectrometer (FIGIFIGO) from
the FGI [25]–[30]. The primarily aim of FIGIFIGO is to
provide multiangular spectropolarimetric measurements of var-
ious samples, including sand, snow, vegetation, etc., both
under actual field conditions and in the laboratory using
artificial illumination. The potential use of the data from
the FIGIFIGO measurements is diverse; including their use
as ground truth references for earth observation and remote
sensing studies, testing and validation of theoretical scattering
models, estimating climate change over time, measuring other
ecological effects caused by changes in land cover, and more
generally, to aid in the identification and analysis of both
seasonal, and nonseasonal variations of targets of interest.
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