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a b s t r a c t

We prove that factorial languages defined over non-trivial finite alphabets under some
natural conditions have intermediate complexity functions, i.e., the number of words
in such a language grows faster than any polynomial but slower than any exponential
function.

© 2008 Elsevier B.V. All rights reserved.

The aim of this paper is to give new examples of factorial languages having intermediate complexity functions. Using
very natural conditions, we introduce two families of such languages over an arbitrary non-trivial finite alphabet. Then we
estimate their complexity, relying on finite automata of a special kind, introduced in [4].

1. Notation and definitions

1.1. Words and languages

An alphabet Σ is a non-empty set, elements of which are called letters. A word is a finite sequence of letters, say
W = a1 . . . an. A word U is a factor (respectively prefix, suffix) of the word W if W can be written as PUQ (respectively
UQ , PU) for some (possibly empty) words P and Q . The power factorization of a wordW is its factorizationW = an1i1 . . . a

nt
it to

theminimal number of factors with all factors being powers of a single letter. As usual, we writeΣn for the set of all n-letter
words and Σ∗ for the set of all words over Σ . The subsets of Σ∗ are called languages. A language is factorial if it is closed
under taking factors of its words, and antifactorial if no one of its words is a factor of another one.

1.2. Automata

A deterministic finite automaton (DFA) is a 5-tuple (Σ,Q , δ, s, T ) consisting of a finite input alphabet Σ , a finite set of
states (vertices) Q , a partial transition function δ : Q × Σ → Q , one initial state s, and a set of terminal states T . The
underlying digraph of the automaton contains states as vertices and transitions as directed labeled edges. Then every path
in this digraph is labeled by a word, and every cycle is labeled by a cyclic word. We make no distinction between a DFA and
its underlying digraph. A reading path is any path from the initial to a terminal vertex. A DFA recognizes the language which
is the set of all labels of the reading paths.
We use also deterministic infinite automata over the finite input alphabet. The definition of such an automaton is distinct

from the one above in exactly one point, namely, the set Q is countably infinite.
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1.3. Complexity

For an arbitrary language L over a finite alphabetΣ the complexity function is defined by CL(n) = |L∩Σn|. For a factorial
language the complexity is known to be either bounded by a constant or strictly increasing (cf. [3], and also [1] for the proof
in the general case). We are interested in the growth rate rather than in the precise form of the complexity function. As
usual, we call a complexity function polynomial if it is O(np) for some p ≥ 0 (bounded from above by a polynomial of degree
p), and exponential if it isΩ(αn) for some α > 1 (bounded from below by an exponential function at base α). We also write
Θ(np) for the function which is bounded from above and from below by polynomials of degree p. A complexity function
is said to be intermediate if it is bounded neither by a polynomial from above nor by an exponential function from below.
Alternatively, it can be said that such a function is superpolynomial and subexponential.

2. Main result

Throughout the rest of the paper we suppose that the finite alphabetΣ = {a1, . . . , ak} is fixed, and k ≥ 2. Consider the
language L of all words U ∈ Σ∗ with the power factorization U = at1i1 . . . a

tn
in satisfying tj ≤ tj+1 for all j = 1, . . . , n − 2.

Thus, the powers of letters in U are non-decreasing, with the last letter being the only possible exception. This exception is
necessary to make L factorial. The language L is obviously exponential if k ≥ 3. For example, it contains the language of all
square-free words overΣ , which is known to be exponential (cf. [2]). However, there is no evidence about the complexity of
L in the case of the binary alphabet. It appears to be intermediate, as a partial case of a more general result on sublanguages
of L for arbitrary k.
Now introduce two subsets of L. For the first one fix a cyclic order onΣ , say, a1 ≺ a2 ≺ · · · ≺ ak ≺ a1, and consider all

words U ∈ Lwith the power factorizations satisfying the additional condition aij ≺ aij+1 for all j = 1, . . . , n− 1. We denote
the language obtained by L≺. Actually, we defined a finite family, parametrized by ≺, of subsets of L. All languages of this
family obviously have the same complexity.
As to the second subset of L mentioned, we can informally say that all its words locally satisfy the same additional

condition. More precisely, this subset consists of all words U ∈ L with the power factorizations satisfying the following
condition. There exists an infinite sequence {≺m} of cyclic orders on Σ such that for any m ∈ N the statement (*) below
holds true. A segment of the power factorization is a product of several consecutive factors.

(*) Suppose that amil . . . a
m
ir is a segment of the power factorization such that tl−1 < m or l = 1, and tr+1 > m or r + 1 = n.

Then

ail ≺m · · · ≺m air ≺m air+1 .

The language obtained is denoted by L̄. We see that we defined here a countably infinite family of languages, indexed by
sequences of cyclic orders. All these languages have the same complexity.
Two remarks should be added to the above definitions. First, L≺ ⊆ L̄ for any cyclic order ≺. Second, L≺ = L̄ = L for the

binary alphabet.
Now we are able to formulate the main result of this paper.

Theorem 1. The languages L≺ and L̄ have intermediate complexity.

3. Special automata and their properties

The proof of the theorem is based on the careful study of two families of finite automata introduced in [4]. First we recall
the definitions and the properties from [4], and then establish other properties needed in the proof.
Recall that the antidictionary of a language L is the set of all minimal words that do not occur as factors of words of L. Any

factorial language is determined by its antidictionary, and either they are both rational or neither is rational.
Suppose that Σ is cyclically ordered, say, a1 ≺ a2 ≺ · · · ≺ ak ≺ a1. Let us write ā for the successor of the letter a, and

consider the family {ADm,≺} of finite antidictionaries defined by

ADm,≺ = {ab | a, b ∈ Σ, b 6= a, b 6= ā}∪

{a2ā ¯̄a, a3ā2 ¯̄a, . . . , amām−1 ¯̄a | a ∈ Σ} ∪ {am+1ā | a ∈ Σ}. (1)

These antidictionaries generate a family of rational languages {Lm,≺}, recognized by so-called web-like automata {Wm,≺}

(see Fig. 1). We associate each vertex ofWm,≺ with a word that labels the shortest reading path ending in this vertex. The
automatonWm,≺ contains one level 1 cycle labeled by the cyclic word a1 . . . ak, one level 2 cycle labeled by the cyclic word
a21 . . . a

2
k , and so on, up to the level m cycle labeled by a

m
1 . . . a

m
k , and k level m + 1 cycles that are loops. The initial vertex of

Wm,≺ belongs to no cycles, while each other vertex belongs to a unique cycle, so we refer to them as to level s vertices. Each
edge in the automaton either belongs to one of the level s cycles or leads from some level s vertex as to the level s+ 1 vertex
as+1. Hence, the levels of vertices along any reading path constitute a non-decreasing sequence. Therefore, any reading path
encounters at mostm+ 1 different cycles. This gives us the boundΘ(nm) for the complexity of Lm,≺ (see [5], Theorem 3.1).



A.M. Shur / Discrete Applied Mathematics 157 (2009) 1669–1675 1671

Fig. 1. The ‘‘web-like’’ automaton for the polynomial language of degreem. The bigger circle represents the initial vertex.

Lemma 1. The language Lm,≺ consists of all words with the power factorization U = a
t1
i1
. . . atnin such that

(1) aij ≺ aij+1 for all j = 1, . . . , n− 1,
(2) tj ≤ tj+1 for all j = 1, . . . , n− 2, and
(3) tj ≤ m for all j = 1, . . . , n− 1.

Proof. The first, second and third sets of words in the antidictionary AWm,≺ (see (1)) provide exactly the conditions (1), (2),
and (3) of the lemma, respectively.

The following example represents the structure of the reading path for U inWm,≺.

Example 1. LetΣ = {a, b, c, d}, a ≺ b ≺ c ≺ d ≺ a. A word U of L3,≺ is shown below together with the levels of vertices in
the reading path (since the letters correspond to edges of the path, we consider a vertex as a position ‘‘between’’ two letters
of the word):

U = .c .d.a.b.c.d.a.︸ ︷︷ ︸
level 1

a .b.b.c.c.d.d.a.a.b.b.︸ ︷︷ ︸
level 2

b .c.c.c.d.d.d.a.a.a.︸ ︷︷ ︸
level 3

a .a.a.a.a.a.︸ ︷︷ ︸
level 4

Now introduce the ‘‘limit’’ of the sequence {Lm,≺}. Take the infinite antidictionary

AD≺ = {ab | a, b ∈ Σ, b 6= a, b 6= ā} ∪ {a2ā ¯̄a, a3ā2 ¯̄a, . . . , am+1ām ¯̄a, . . . | a ∈ Σ}, (2)

and denote the factorial languagewith this antidictionary by L̂≺. The following straightforward lemma is similar to Lemma 1.

Lemma 2. The language L̂≺ consists of all words with the power factorization U = a
t1
i1
. . . atnit such that

(1) aij ≺ aij+1 for all j = 1, . . . n− 1, and
(2) tj ≤ tj+1 for all j = 1, . . . n− 2.

Thus, we have L̂≺ = L≺. Combining Lemmas 1 and 2 we obtain the following simple lemma.

Lemma 3. The following formulas are true:

(1) L1,≺ ⊂ L2,≺ ⊂ · · · ⊂ Lm,≺ ⊂ · · · ⊂ L≺;
(2)

⋃
∞

m=1 Lm,≺ = L≺;
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(3) L≺ ∩Σm = Lm,≺ ∩Σm.

We also note that an infinite web-like automaton can be constructed as the limit of the sequence of finite web-like
automata, and this automaton recognizes exactly the language L≺.
Now we proceed with the second family of finite antidictionaries and corresponding sequence of automata. Consider

a family of symmetric finite antidictionaries {ADm}, where ADm is the minimal symmetric (that is, stable under all
permutations of letters) language containing the following set of words:

{ am+11 a2,
am1 a

m
2 a1, am1 a

m
2 a
m
3 a1, . . . , am1 a

m
2 . . . a

m
k−1a1,

am1 a
m−1
2 a3,

am−11 am−12 a1, am−11 am−12 am−13 a1, . . . , am−11 am−12 . . . am−1k−1 a1,
am−11 am−22 a3,
. . .

a21a2a3,
a1a2a1, a1a2a3a1, . . . , a1a2 . . . ak−1a1 }.

(3)

These antidictionaries generate a family of rational languages {Lm}, recognized by finite automata {Am}. The automatonAm
is complicated enough even in the simplest particular cases, so we do not draw it here (the picture of {A2} for the ternary
alphabet can be found in [4]). However, this automaton can be mentioned as constructed from a finite, but large number of
copies ofWm,≺. The necessary properties ofAm are collected below.
All cycles inAm are disjoint. For any s = 1, . . . ,mAm contains (k− 1)! level s cycles labeled by all possible cyclic words

of the form asi1 . . . a
s
ik
, where all letters ai1 , . . . , aik are distinct. Such a cycle connects a cyclic sequence of vertices

All k level m + 1 cycles are loops, similar to the case ofWm,≺. In the present case we retain the notion of level s vertex.
But in Am there are vertices which belong to no cycle, provided that k > 2. These are vertices of the form asi1 . . . a

s
ir−1
atir ,

where r < k− 1. Such vertices are called prefix level s vertices, because they are prefixes of some level s vertices, but not of
vertices of lesser level. Each level s vertex is prefix level s also.
Each edge ofAm either preserves the prefix level or increases it by 1; in the last case the destination vertex is a power of

a single letter. Hence, the prefix levels of vertices of a reading path constitute a non-decreasing sequence. Like for the case
ofWm,≺, we see that the maximum number of different cycles encountered by a reading path ism+ 1, whence we get the
complexity boundΘ(nm) for Lm.
Now we prove the analogues of Lemmas 1–3.

Lemma 1′. The language Lm consists of all words with the power factorization U = a
t1
i1
. . . atnin such that:

(1) there exist cyclic orders≺1, . . . ,≺m onΣ such that if tj = s then aij ≺s aij+1 for all j = 1, . . . n− 1,
(2) tj ≤ tj+1 for all j = 1, . . . n− 2, and
(3) tj ≤ m for all j = 1, . . . n− 1.

Proof. The words of the antidictionary that are situated in the odd rows of (3) clearly provide the conditions (2) and (3).
To prove (1) we construct the required cyclic order ≺s for any s = 1, . . . ,m. Fix the number s and consider the fragment
Us = a

tl
il
. . . atrir a

tr+1
ir+1
of the power factorization of U such that

tl = tr = s,
tl−1 < s or l = 1,
tr+1 > s or r + 1 = n.

Using that the antidictionary contains the words

as1a
s
2a1, a

s
1a
s
2a
s
3a1, . . . , a

s
1a
s
2 . . . a

s
k−1a1,

together with all their cyclic permutations, we obtain the following. If Us consists of at most k powers of letters, then all
these letters are different. Hence we can order the existing letters as ail ≺ · · · ≺ air ≺ air+1 , and complete this partial
order to a cyclic order on Σ in an arbitrary way. Suppose that Us consists of more than k powers of letters. We have that
any k successive powers are those of different letters. Then ail+k = ail , ail+k+1 = ail+1 , and so on. Therefore we can define the
required cyclic order as

ail ≺s ail+1 ≺s · · · ≺s ail+k−1 ≺s ail .
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It can be directly verified that anywordwith the power factorization satisfying the conditions (1)–(3) has no factors from
ADm and hence belongs to Lm.

The following example represents the structure of the reading path for U inAm.

Example 2. LetΣ = {a, b, c, d}. A word U of L3 is shown below together with the levels of vertices in the reading path:

U = .c.d.a .b.c.d.a.︸ ︷︷ ︸
level 1︸ ︷︷ ︸

prefix level 1

a .c.c.b .b.d.d.a.a.c.c.︸ ︷︷ ︸
level 2︸ ︷︷ ︸

prefix level 2

c .a.a.a.d .d.d.b.b.b.︸ ︷︷ ︸
level 3︸ ︷︷ ︸

prefix level 3

b .b.b.b.b.b.b.︸ ︷︷ ︸
level 4︸ ︷︷ ︸

prefix level 4

The letters in this word follow each other according to three different cyclic orders.

In order to define the ‘‘limit’’ of the sequence {Lm} consider an infinite antidictionary ADwhich is the minimal symmetric
language containing the infinite set of words

{ . . . ,

am+11 am2 a3,
am1 a

m
2 a1, am1 a

m
2 a
m
3 a1, . . . , am1 a

m
2 . . . a

m
k−1a1,

am1 a
m−1
2 a3,

. . .

a21a2a3,
a1a2a1, a1a2a3a1, . . . , a1a2 . . . ak−1a1 },

(4)

and denote the factorial language with this antidictionary by L̂. The following two lemmas are easy analogues of Lemmas 2
and 3.

Lemma 2′. The language L̂ consists of all words with the power factorization U = at1i1 . . . a
tn
in such that:

(1) there exists an infinite sequence {≺m} of cyclic orders onΣ such that if tj = s then aij ≺s aij+1 for all j = 1, . . . n− 1, and
(2) tj ≤ tj+1 for all j = 1, . . . n− 2.

Thus, we have L̂ = L̄.

Lemma 3′. The following formulas are true:

(1) L1 ⊂ L2 ⊂ · · · ⊂ Lm ⊂ · · · ⊂ L̄;
(2)

⋃
∞

m=1 Lm = L̄;
(3) L̄ ∩Σm = Lm ∩Σm.

4. Proof of the main result

The proof of superpolynomiality is straightforward. Suppose that the complexity function of L≺ is bounded from above by
a polynomial of degreem. The language Lm+1,≺ with the complexityΘ(nm+1) is a subset of L≺ by Lemma 3. This complexity
is not bounded from above by a polynomial of degreem, so we get a contradiction. The proof for L̄ is the same.
To prove that these languages are subexponential we need some auxiliary construction. We first get a subexponential

upper bound for the complexity function of L≺, and then use the same idea in a slightly more complicated form for the case
of L̄.
The value CL≺(n) equals the number of reading paths of length n in the web-like automaton Wn,≺. We associate a

characteristic word of length n over {0, 1} with each such path as follows. The i-th letter of the characteristic word is 0
(respectively 1) if the i-th edge of the path belongs to a cycle (respectively belongs to no cycle). Since a vertex ofWn,≺ has
neither two outgoing cyclic edges nor two outgoing noncyclic edges, a characteristic word determines aword of L≺ up to the
first letter. Hence, CL≺(n) equals the number of characteristic words of length nmultiplied by the size ofΣ . So, it is sufficient
to prove that the language CH of all characteristic words is subexponential.
The properties of characteristic words are collected in the following lemma.

Lemma 4. (1) Each non-empty characteristic word begins with 1.
(2) The language CH is closed under taking prefixes.
(3) The number of zeros between i-th and (i+ 1)-th 1’s in any characteristic word is either zero or a multiple of i.
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Fig. 2. An infinite automaton recognizing a binary language of complexity CL≺ (n)/k. The bigger circle represents the initial vertex.

Proof. (1) The initial vertex ofWn,≺ belongs to no cycles.
(2) An initial segment of a reading path is a reading path also.
(3) The i-th 1 in a characteristic word codes the edge going from the level i−1 cycle to the level i cycle of the automaton.

After this edge the path can either immediately leave the level i cycle or go with it. The first alternative means that the
(i+ 1)-th 1 immediately follows the i-th 1. As regards the second alternative, note that among the level i vertices only the
vertices of the form ai, a ∈ Σ , have outgoing edges to the level i + 1 cycle. The nearest such vertices are connected by a
fragment of the level i cycle of length exactly i. Thus, a path that exits the level i cycle contains an integer number of such
fragments. �

An infinite automaton recognizing CH is shown in Fig. 2.
Count the maximum possible number of occurrences of the factor 10 in a characteristic word. If the i-th 1 in a

characteristic word is followed by 0, then it is followed by at least i 0’s by statement (3) of Lemma 4. Hence, the difference
between the initial positions of i-th and (i + 1)-th occurrences of 10 is at least i + 1. The first and the last factors 10 can
begin in the first and the penultimate positions of the word respectively. Thus, the minimum length of a characteristic word
with t factors 10 is

1+ 2+ · · · + t + 1 =
t(t + 1)
2

+ 1,

and this yields that the number of (10)’s in a characteristic word of length n is O(
√
n). Note that the number of (10)’s and

the number of (01)’s in any binary word differs by at most one. In our case the number of (01)’s is equal to the number of
(10)’s or is less by one due to statement (1) of Lemma 4.
It is clear that any word over {0, 1} is determined by its first letter (it is 1 in our case) and the set of positions of all its

10 and 01 factors. To determine such a word of length n with i such factors, we choose i positions for them among n − 1
possible. This means that the total number of such words is

(
n−1
i

)
. In our case i ≤ B

√
n for some constant B. Now we can

evaluate the complexity of the language CH (bxc stands for the integer part of x):

CCH(n) ≤
bB
√
nc∑

i=1

(
n− 1
i

)
< bB
√
nc
(
n− 1
bB
√
nc

)
= bB
√
nc
(n− 1) . . . (n− bB

√
nc)

bB
√
nc!

< (n− 1) . . . (n− bB
√
nc) < nB

√
n
= 2B

√
n log n. (5)

We have proved that the language CH is subexponential, and so is L≺.
Now we are able to prove that L̄ is also subexponential. Any length n word of L̄ is recognized by the automaton An. As

above, a reading path inAn will generate a unique characteristic word of {0, 1}∗; we slightly change the rule for generating
such words. In the above case 0 in a characteristic word corresponds to an edge that retains the level of the vertex, while 1
corresponds to the edge that increases this level.We replace the level of the vertex by its prefix level in this condition to obtain
a definition that suits the symmetric case. One can prove that the new definition leads to the same set CH of characteristic
words. But we do not need this statement to prove the theorem, so we leave the proof to the reader. The only result that we
need is the statement (3) of Lemma 4. The proof of it for the new definition is nearly the same, but we give it here.
Recall that all edges increasing the prefix level of a vertex from i to i + 1 lead to some vertex ai+1 ofAm. The i-th 1 in a

characteristic wordU codes the edge connecting some prefix level i−1 vertex to a prefix level i vertex, say ai. After this edge
the path can either immediately go to the prefix level i + 1 or stay on the current prefix level. The first alternative means
that the (i + 1)-th 1 of U immediately follows the i-th 1. If the path stays on prefix level i, it goes to some vertex aib. The
next (i− 1) edges of the path are uniquely determined and lead to the vertex aibi, so we have i 0’s following the i-th 1 in U .
Here the path again has the possibility of leaving prefix level i, and if it does not, then the situation will repeat after each i
edges. The required property follows from this.
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Like in the above, using this property we obtain that a length n characteristic word has O(
√
n) factors 10 and 01. Thus,

we have the upper bound (5) for the number of characteristic words of length n.
Now take a characteristic word U of length n and estimate the number of paths inAn with this characteristic word. Any

vertex V of An has at most one outgoing edge to a vertex of bigger prefix level. (This edge exists if V has prefix level i and
ends with some ai; the label of this edge is a.) On the other hand, V may have several outgoing edges to the vertices of the
same prefix level. So we can conclude that a given 1 in a characteristic word corresponds to a unique edge, while a given 0
can correspond to several edges. If the i-th 1 in U is followed by 0, this means that any path with the characteristic word U
tries to reach one of level i cycles. There are (k − 1)! such cycles; hence the number of different fragments of paths coded
by the sequence of 0’s after the i-th 1 in U does not exceed (k − 1)!. As we already know, the number of 1’s in U that are
followed by 0’s is O(

√
n). Thus, U codes less than (k− 1)!B

√
n words for some constant B. By (5), we have

CL̄(n) ≤ CCH(n) · (k− 1)!
B
√
n < (2(k− 1)!)B

√
n log n.

The theorem is proved.
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