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1. Introduction

Options are one of the most traded financial products. Pricing them has received a lot of attention and dates back to the
Black-Scholes (B-S) model, proposed in 1973 by Black and Scholes [1] and Merton [2]. Though very popular it has some
shortcomings like missing the “volatility smile” [3] observed in real markets. The use of fractional derivatives and integrals
is booming as it provides a powerful tool for incorporating history due to its non-local nature [4]. Also distributed order
fractional equations [5] are emerging, where the fractional order is a continuous pallet. Among the numerical methods
available for solving fractional differential equations we mention [6]; finite difference methods, finite element methods,
finite volume methods, spectral methods, and meshless methods.

With the discovery of the fractal structure of a stochastic process, fractional calculus has found its way to stochastic
models and financial theory. Wyss [7] priced a European call option by a time fractional B-S model. A single parameter and
a bi-parameter fractional Black-Scholes—-Merton differential equation was derived by Liang et al. [8] under the assumption
that the stock price dynamics follows a fractional Ito process. Also numerical methods for the time-fractional Fokker-Planck
equation [9] are receiving more attention.

In this paper we continue the work of Chen et al. [10] and Zhang et al. [ 11]. We assume that the underlying still follows
the classical Brownian motion as in the B-S model, but consider the change in the option price as a fractal transmission
system. As a result, the spatial-fractional derivative in the governing equation disappears, but the time-fractional derivative
remains, see (1). Chen et al. [10] derive a series solution for the price of a double barrier option by using the eigenfunction
expansion method together with the Laplace transform. Zhang et al. [11] construct a discrete implicit numerical scheme
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with a spatially second-order accuracy and a temporally 2 — « order accuracy. (In [ 12] the same is done in the case tempered
fractional derivatives are used.) We will improve the spatial accuracy of [11] to fourth-order.

Let C(S, t) be the time-t price of a European double barrier option with underlying S. More specific we consider for
0<a=<1[10,11]:

%C(S,t) 1 , ,3%C(S,t) 9C(S, t)

e T3 S TvL(r—D)S 55 =rC(S,t), (S,t) € (Bg, By) x (0, T), (1a)
with the following boundary (barrier) and final conditions

C(Ba,t)=P(t),  C(But)=Q(t), 0<t<T, (1b)

C(S, T)=V(S), By < S < By, (1c)

where r is the risk free rate, D the dividend rate and o > 0 is the volatility of the returns. The functions P and Q are the
rebates paid when the corresponding barrier is hit. The terminal payoff of the option is V(S). For example, a European double
barrier knock-out call option has P = 0 = Q and V(S) = (S — K); where K is the strike and (-), = max{-, 0}.

The fractional derivative in (1a) is a modified right Riemann-Liouville derivative defined as

1 9 /T C(S,€)—C(S,T)

d¢ O<a<1

9°C(s.t) _ Jr(-a)at (£ —t)
ate 3C(S, t) _1
ot =

We transform the problem to an initial value problem by using the time to maturity t := T —t. Note that for 0 < o < 1one
has

8eC(s. t 1 8 [TCS.T—n)—CS.T
_ e,y _ f C.T=m=CE.1)y . peces, T - 1),
0

ate I'(1—a)or (t —n)
When we putx = InS, U(x, ) = C(e*, T — t), we find
32U(x, aU(x,

(x,7) b (x,7)

oDiU(x, 7)=a —cU(x,7), (x,7)€(0,+00) x(0,T), (2a)
0x? 0x
where a = %oz > 0,b=r —a— D, c =r,and with the following boundary (barrier) and initial conditions
U(bg, T) =p(t),  Ulby,t)=gq(r), O0<7<T, (2b)
U(x, 0) = v(x), by < x < by,. (2¢)

In fact, the fractional derivative (D coincides with the Caputo fractional derivative for 0 < o < 1, thatis

1 a /" U(x, n) — U(x, O)d 1 /’ aU(x, n) 1
_Z n=
Ir(1—a)dr Jo (t—n)r rt—a)Jo on (r—n)
when U is continuous time differentiable.

We will develop a numerical scheme for the more general problem

U, T aU(x, T
. (x,7) b (x,7)
0x? 0x
The outline of this paper is arranged in the following way: we introduce a step by step construction of the difference scheme
in the following section. Next, in the third section, the unique solvability, convergence and un-conditional stability for the
difference scheme are analyzed carefully. In the fourth section, numerical examples are given to illustrate the accuracy of

the presented scheme and to support our theoretical results. Finally, the paper ends with a conclusion and some remarks for
future work.

OD?U(X, t) =

—dn = §DYU(, 7),

=oDUX, 7)+ cUx, t) — f(x, T), (x, 7)€ (0,400)x (0,T). (3)

2. Construction of the difference scheme

A numerical solution based on a compact difference scheme is derived. Before we continue, some notations are fixed.
Take two positive integers M and N, let h = b”M;bd AT = % and denote x; = by +ihfori =0,...,M, and 7, = k A7, for
k=0,...,N.

Based on Taylor expansion of V e ¢*(by, b,) we have

WV, w) _ Vi1, ) = V(xio, w) 0 9°V(xi, )

ox 2h 6 ax3

=8V (x;, k)

+ o(h™), (4a)
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and
2V(xi, ) V(X1 w) — 2V(x, ™) + V(xie, ) h? 9%V (xi, ) 4
= - O(h™). 4b
X2 h? 12 x4 +0h) (4b)
=82V(xj,7¢)

Using (4) in (3) we arrive in a grid point (x;, ti) at

ad2U(xi, tc) + b&U(x;, 7o) — R = g(xi, 7). (5)
with

Rk hz a84U(Xis Tk) + 2ba3U(Xia Tk) + O(h4) (X ) DotU(X )+ CU(X ) f(X )

A p— , ,T)= , T ,T)— ,T)

T 12 axt 3x3 & 07
Note that from (3)-(4) it follows that

PUMX, w) 1

s = ¢ (3l ) — b8UGk. W) + O) (6)
and invoking the latter

*Uxi, T 1 b

4%jjlzEGQWJ@_E@ngyJMUWJm)+mw) 7)

When we substitute (6)—(7) in R’F and consequently in (5) we obtain

h? b b?
R:'( ]2 (8 g(xi, ™) + (ng(xla %) — *5 U(xi, fk)) + O(h4)’
and
2

b
— [ 828(xi, w) + =8xg(xi, T) ) + &(xi, w) + O(h*), ®)
12a 2 a
with g(x, t) = oD2U(x, ) + cU(X, T) — f(X, 7).
Next, it is clear that to obtain a numerical scheme, we need to approximate the Caputo derivative in g. This is based on a
result of Sun and Wu [13].

b\
a+ —— ) 8;Ulxi, o) + b&U(x;, 7o) =

Lemma 2.1. Let u € C?[0, ty] and « € (0, 1) then

k—1
AT™? _
oDF Ul ) = ooy | Ful ™) ]_Z]ck_, | = G, ) — 6, T0) | + O(ATH ), 9
wherec =G+ 1 jl‘“,andinfact,lzcg >cf > > cj?‘ — 0asj — +oo.

Proof. See [13,14]. O

We evaluate (8) at (x;, 7x) with the help of (9) to obtain

h2b%\ ,
a+ —— ) 8;U(xi, ) + b8 U(xi, ™)

12a
Ar— k—1
= To—a culxi, ) — D (e 1 — G ulxi, 1) — (i, T0) | + cU(xi, ) — f(xi, )
j=1

n2 (., b AT <
+E(8x+a(3x> m cou(xi, ) ;QHl ck]u(xl,tj) Cr_1U(xi, To)

+ Ui, ™) — f(xi, w) | +RE, (10)

where the estimate

Rf| < c(at* +h*), (11)
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holds. Denote U(x;, ti) = Ul LU= 2 Z) and 1 = — (a + blzzha ) When we omit Rf and doing some rearrangements, we
get the our final difference scheme

w+c b bh( ) K 10 mw+c b bh K
_pETe 2 Uk, o+ | =200 — — 7_7( ) U
[’“ 2 o’ o) |URa | =2 = e U = =+ oy = o (ko) [ U

k—1
bh
= _fik (flkl _ka+f1 1) - (fllj—l - ik—l)_'u (Ck_jo1 — G )U]+Ck 1Uzo
24a i-
j=1
k—1
M «
Z 1~ G U 2UJ+U1+1)+CI<71(U1'01 20U + Uy
j=1
k—
buh o i o .
~aa e — ULy — U )+ (U, = U2 ) | i=1,2,... . M=1,k=1,2,....N. (12)

3. Theoretical analysis of the difference scheme

In this section, we provide the uniqueness, stability and convergence theorems for the proposed difference scheme.
Theorem 1 (Solvability). The compact difference scheme (12) is uniquely solvable.

Proof. The compact difference scheme (12) can be written in a more concise form

= bk—] )
where the right hand side by_; depends only on the history U¥~', U*=2, ..., U°. The tridiagonal coefficient matrix A = (a)
is strictly diagonally dominant because |a;| > Y |a;, where

J#

10 2
|aii|=2M1+E(l/~+C)v Z|au| =2ur + 12(M+C)-
J#i
Therefore, the coefficient matrix is nonsingular and hence invertible. The theorem is now readily proved by strong
induction. O

The stability analysis of the proposed difference scheme (12) will be discussed in terms of a Fourier analysis as in [ 1 1] which
in turn goes back to also [15,16]. Let Uk be an approx1mate solution of (12) and define e = U" U" fori =0,1,..., M,
k=0,1,...,N.The roundoff error equatlon in terms of ¥ €; can be obtained from (12), namely

w+c b bh K 10 K w+c b bh o
[’“‘12 =20 * aag () [l |2 = )| el [ = F b on = o (e [l

k—1 k—1

=TH Z(Ck*j*1 - Ck—j)ég +oae | - 12 Z(Ck*jfl - Ck—j)(fgq — 26+ 61 Dt Galel = 260+ 6ily)
=1 =1

buh N u . . .
_E Z(Ck—jfl - Ckfj)(eir] - 6{',]) + Ck’f](équ — 6?7]) N (13)

and €f = €, = 0. The grid function

) h h
€; X,‘—§<X§X,‘+5

ef(x) ==

h h
0 Bd§x58d+50r3u—5<x53u,

can be expanded in a Fourier series

+00

k _ _ 1 ' k .
e(x) = Z di(exp(i2xix/L), k=1,2,...,N, di(l)= I €“(x)exp(—i2mix/L)dx
l=—c0 0
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where L = B, —Bgand i* = —1.Let ek = (e}, €k, ..., €f_,) € CY~!, with the following norm

M-1 , 1/2 L , 12
I, = (Zhlfﬂ ) = [/0 e (x)| dx:| .

i=1

The application of the Parseval identity leads to

B +00
le]5 = D 1denr. (14)
I=—00
Based on the above analysis, we suppose that the solution of (12) has the following form
27l
ek = dyexp(iojh), o = T’T

Substituting the above formula into (13) we arrive at

k-1

: > (et yr — iy )+ ciado | - (15)
<—4p,1 + %)smz%” + (B — 2y + o)) sin(oh) — (u+¢) \ i

h _ bhui

—p+ &sin® Q! — S sin(oh)

dy =

Lemma 3.1. The following estimate holds

—p+ 4sin* 2! — bhit Gin(oh
K’ 20 Sin(h) <1 (16)

(—4M+“;f)sm2ﬂ+( — B4 o)) sin(oh) — (4 )|

Proof. We know thath < 1, At <1and0 <« < 1sou > 0.Alsoifr < athen pu; > % Inequality (16) holds iff

h bh' h bi bh
o B2t 2 C)sin21+<—‘ I(M+C)>Sin(0h)—(u+6),

sin(oh)| < (—4u1+“+

3 2 12a 2 h 12a

or equivalent
(—4y,5)? — 8 s( +“s) 4 s(c+cs)+ b b et PV sinon) = 0
- - —u+=S) - -+ = - i
123 M1 1% 3 193 3 GaM 120 h2 on)=
with S := sin® (%'). Since
2b 2b b 2b 2b

b .2 2 22 2
— —usin“(ch) = —uS“ — —uS and — ——csin“(och) = —cS° — —cS,
6aM (oh) 3aM BaM 12a (oh) 6a 6a

inequality (16) holds iff

2b 2b 2b 2b b?
(415)% + 8015 (u - ﬁs) + (4415) (c - 55) + (208 = Zus) + ( 2es? = Zcs ) + sind(oh) = 0
3 3 3a 3a 6a 6a h

or equivalent

5 8 8 5 2 2b 2b , 14 4 4 5
(4pn1S)” + 5##15 - §MM15 + gumS - gus + ?MS + ?MMS + 56#15 - 56#15

+ 2 cS 2ch + 2b s + “ S + il sin(ch) > 0
= - = = — —sin’(o
61 " 6a 6a 61T 2 =

All parts of the previous inequality are positive. Indeed,

3 3 3 3

2 SZbS—ZS b ZCS 2ch—25 b>0[|
3MM1 3a'u —3M M1 a) 6#1 6a —GM M1 a) ="

Lemma 3.2. Suppose that di,, k = 1,2, ..., N, are the solutions of Eq. (15), we have

8 8 2 8 ,oh 4 4 5 4 ,0h
gumS — S UpaST ) = —ppqS cos 5 >0, gcmS — —cu1S ) = cp4S cos 5 >0,

and

|di| < |do] . (17)
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Proof. Strong mathematical induction is used to prove (17). For k = 1in(15), we have

J (—n + %sin? 2t — M sin(oh)) cgdo g
1= s o — L.
(—4,L1 + “;C)smzﬂ + (B — M 4 6)) sin(oh) — (1 + c)
Suppose that |d,| < |dg|,forn=1,2, ...,k — 1.Based on (15), we can write
dd < —ju+ bsin?eh — BT gin(s ) 1
Kl —

(—4M1 + “;f)sm“—h + (B = D 4 ) sin(oh) — (u+ )| \'D
Invoking estimate (16) we obtain
el = (c§ — i) dol + iy 1dol,

which coincides with the aim of the theorem. O
Theorem 2 (Stability). The compact difference scheme (12) is unconditionally stable.

Proof. From Lemmata 3.1 and 3.2, we deduce

€] = Z L0 Z jdo(* = le°]l-

Hence, | €

!2 < ||e0 H2 and the unconditional stability of the proposed scheme is achieved. O

> (et — ey ) dol + iy Idol

1171

To conclude, we proof that the difference scheme (12) converges with time accuracy of order 2 — « and spatial order of four.

We define the grid functions

X h h

’ e; Xi——<X<xi+-, i=12,...,.M—1
e‘(x) = 2 2 h

0 Bdfxde—i-i or Bu—5<x§Bu

and

h
R¥ K= <X=Xt+o, =12, M-1

3’

R’((X)Z h
0, BdSXSBd+§ or Bu—5<x§Bu.

As above, we can write the following series expansions

oo

()= Y mDexp(i2nlx/L), k=0,1,...,N,
I=—00

R¥(x) Z g(hexp(i2nix/L), k=0,1,...N.
I=—00

Define the following

e¥ =u(x, ) —U¥, k=0,1,...,N,j=0,1,..., M,

e=el, e, ....ey ], R=[RLRS,....RY_,]. k=1,2,...,N,

and introduce the norms

1/2

M—1 , 1/2 L ,
||e"||2:<Zh|ef.‘|) :[/ 1) dx] C k=0.1.....N,

i=1

M—-1 1/2
IR], = (Zh|R") =U IR¥(x |dx] . k=0.1.....N.

i=1

(18)
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An application of the Parseval identity leads to

o0
le)2 = 37 P k=0,1,....N,

IRI3 = > &M’ k=0,1,...,N.

Also, (11) gives
Rf| < C(ar®*+n?).

Subtracting (12) from (10), we get

n—+c b bh ( ) 10 X
-0 - i 211 — — (1 \
|:M] 12 2h * %4a 24a e it ! 12( tole

n M+C+ b bh( +C)
M= T on T 2ag\# €1

k=1 k=1
=M ( (Cjor — Cl?—j)ei‘ - (Cjor — Cl?—j)(ei’—l —2ej+ e’+]) + o yle) —2¢) + el y)

oy — ) (el — el ) | +RE,

|
| o
.u‘?:
8 s
—
-
HMT
[N N
S
o
-~
d
n)
=~
4

=0 i=12..M-1

Based on the above analysis, we assume that ef and Ri.‘ are written as follows

2wl
e = peexplicih), R = égexp(ioih), o= %
Substituting the above relations into (22) gives
—p+ Esin? 2 — P sin(oh) Ly
e = o2 oh bhi : Z<C"‘j‘1 - C"‘1>n
(4 + 155 )sin 2+ (5 = Ui + ) sin(oh) = (u + 0) i
gk

+

(—4m + 15 )sin? 2 + (B = 210 + ) sin(oh) — (u + )

and noticing that e = 0 we have o = 0.
From (18) and (21), we obtain

[RE], = V/MhCy (AT + ) = VG, (AT + 1Y),

Due to the convergence of the series on the right hand side of (20), there exists a positive constant ¢, such that

&l = 15(n)] < AT [6(n)], k=1,2,...,N.

Similar to the proof of Lemma 3.1 we can prove the estimate:

Lemma 3.3. The following relation holds

1
<9.
(4p1sin? % + ( + ¢) — “4<sin? 2)? 4 (2 sin(oh) — 2L (u + ¢)sin(oh))?
Lemma 3.4. Suppose that ni, k = 1,2, ..., N, are the solutions of (25), then there exists a positive constant C, such that

el < G (143A0) &

(21)

(23)

(24)

(25)
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Proof. Strong mathematical induction will be used. From (25), (27) and (28), we get
[{15
(4pasin® % + (1 +¢) — ”“smz"—h) + (sin(oh) — Z(u+ c)sm(ah))
hence, |n1] < 3AtG |&] < (14 3A71)C |&1]. Now, let
Il < (14+3AT)'Cl&1l, n=1,2,...,k—1.
Using (16), (27) and (28) in (25) we obtain

Iml?* < < 9ATACHIE %,

| | |_M+ MsanUh 12(1 Sln(ah)| - c¥ —c¢ .
el = ptc 20h bhi . k—=j—1 ke )i
‘(—4;“ + T)sm o (B — Mgy 4 o)) sin(oh) — (1 + c)‘ =
€|

+ ,
‘(—4u1 + ";“C)smz%h + (B = 2y + ) sin(oh) — (n + c)‘

=~
—_

= (6o — )1+ 380YG g1l + 3G AT [l
j=1

The proof is concluded by observing that
k—1
Inel < (143801 1611 Y (e — i) +3CAT Il
j=1
< (A+3AD GG (1- L) + 1 +3AD G 6] < (14340 G &), O

Theorem 3 (Convergence). Assume that u(x, t) is the exact solution of (3), then the compact difference scheme (12) is
L,-convergent with convergence order O(At>~* + h%).

Proof. Consider Lemma 3.4 and combine (19), (20) and (26), to obtain

l€], < (1 +3Aa0)%G |R'], < (VLG exp(3kAT) (AT + hf).

I, =
Since kAt < T, we obtain ||e*||, < C (At>™ + h*), where C = ci1c2v/Lexp(3T). O

4. Numerical experiments

To demonstrate the accuracy of the solution and the order of convergence of our proposed difference scheme, we
introduce two examples exhibiting an exact solution.
Let uf = u(kArt, h, ) be the solution of the constructed difference scheme (12) with the step size At in time and h in
space. Define the maximum norm error by
E(At,h) = max |Uf —uf|_ .
0<i<M
0<k<N

and the following error rates, rate,, = log, ( ZAAT’ hh))) rate, = log, (EE((’TZ,S)) We reconsider two numerical examples which
appeared in [11] and compare.

4.1. Example 1

Consider the following time fractional model
9%U(x, 1) oU(x, t)
a b
0x2 + 0x
with the following initial and boundary conditions

U(x,0) =x*(1—x), U(0,7)=U(1,7)=0

DIU(x,T) =

—cUx, t)+ f(x, 1),

such that the source term

_ (2 207 e 12 [a(2 — 6x) + b(2x — 3x%) — cx¥(1
f(x,r)—(r(3_a)+F(2_a)X( %)= (2 + 17 [a(2 — 6) + b{2x — 3%) — 0¥’ —x)])
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g?:);:s zmd convergence orders of the numerical solution for Example 1.
(a)M = 150 (b)N = 1000
T E(At, h) ratea, h E(At, h) ratey,
= 0.0035 1 0.0028
= 0.00144 1.28 3 0.00019 3.875
® 0.00059 1.29 % 0.000013 3.889
® 0.00024 1.295 = 8.33475 x 1077 395
5 0.000095 1315 & 476035 x 107% 413
75 0.000038 1.32 a5 238336 x107° 432

Table 2

Errors and convergence orders of the numerical solution for Example 2.
()M = 150 (b)N = 1000
T E(At, h) ratea, h E(At,h) ratey,
= 0.0052 1 0.0125
= 0.00207 1.33 3 0.00079 3.98
® 0.00083 1315 % 0.00005 3.995
& 0.00033 1.34 % 3.0412 x 10°° 403
5 0.00013 1.36 = 179822 x 1077 4.08
6 0.00005 1.38 o5 9.6493 x 107° 4.22

is chosen such that the exact solution of this problem is
Ux, 7) = (1 + 1%%%(1 — x°).

2

The parameters values are chosenasr = 0.05,0 = 0.25,a¢ = 0.7,a = 5-,b =1 —a,c = rand T = 1. The results are

shown in Table 1.
4.2. Example 2

The second example has nonhomogeneous boundary conditions;
3%U(x, aU(x,
(x,7) b (x,7)
0x? ox
with the following initial and boundary conditions

D*U(x,t)=a —cUx, )+ f(x, 1),

Ulx,0)=x>+x>+1, U0, ) = (t + 1), U(l,7)=3(t +1)?
such that the source term

272 27l
flx, 1) = (1"(3 e + = a)(x-’" + X2 4+1) = (t + 1) [a(6x + 2) + b(3x* 4 2x) — c(X* + X* + 1)])

is chosen such that the exact solution of this problem is
Ulx,7)=(t + 12 + x>+ 1).

The parameters values are chosenasr = 0.5, = 0.7,a=1,b=r —a,c = r and T = 1. The results are shown in Table 2.

Both examples support the theoretical results established in Theorem 3, that is, an order of convergence in time of
2 — 0.7 = 1.3 and of order 4 in space.

5. Conclusions

The time fractional B-S model is a generalization of the classical B-S model. An implicit numerical scheme with a temporal
accuracy of order 2 — « and spatial accuracy of fourth order is constructed to approximate the time fractional B-S model. It
is proved that the implicit numerical scheme is unconditional stable and convergent by using the Fourier analysis method.
Two numerical examples with exact solutions are chosen in order to illustrate the accuracy and convergence order of the

numerical method. The numerical technique presented in this paper can be extended to other fractional models for pricing
different European options.
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