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a b s t r a c t

The numerical solution of the time fractional Black–Scholes model (TFBSM) of order 0 <

α < 1 governing European options is studied. Zhang et al. (2016) derived a numerical
scheme of second-order in space. We improve their results by constructing a scheme of
fourth-order in spacewhile keeping 2−α in time. The solvability, stability and convergence
of the proposed numerical scheme are proved using a Fourier analysis. The results are
demonstrated on two examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Options are one of the most traded financial products. Pricing them has received a lot of attention and dates back to the
Black–Scholes (B–S) model, proposed in 1973 by Black and Scholes [1] and Merton [2]. Though very popular it has some
shortcomings like missing the ‘‘volatility smile’’ [3] observed in real markets. The use of fractional derivatives and integrals
is booming as it provides a powerful tool for incorporating history due to its non-local nature [4]. Also distributed order
fractional equations [5] are emerging, where the fractional order is a continuous pallet. Among the numerical methods
available for solving fractional differential equations we mention [6]; finite difference methods, finite element methods,
finite volume methods, spectral methods, and meshless methods.

With the discovery of the fractal structure of a stochastic process, fractional calculus has found its way to stochastic
models and financial theory. Wyss [7] priced a European call option by a time fractional B–S model. A single parameter and
a bi-parameter fractional Black–Scholes–Merton differential equation was derived by Liang et al. [8] under the assumption
that the stock price dynamics follows a fractional Ito process. Also numerical methods for the time-fractional Fokker–Planck
equation [9] are receiving more attention.

In this paper we continue the work of Chen et al. [10] and Zhang et al. [11]. We assume that the underlying still follows
the classical Brownian motion as in the B–S model, but consider the change in the option price as a fractal transmission
system. As a result, the spatial-fractional derivative in the governing equation disappears, but the time-fractional derivative
remains, see (1). Chen et al. [10] derive a series solution for the price of a double barrier option by using the eigenfunction
expansion method together with the Laplace transform. Zhang et al. [11] construct a discrete implicit numerical scheme
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with a spatially second-order accuracy and a temporally 2−α order accuracy. (In [12] the same is done in the case tempered
fractional derivatives are used.) We will improve the spatial accuracy of [11] to fourth-order.

Let C(S, t) be the time-t price of a European double barrier option with underlying S. More specific we consider for
0 < α ≤ 1 [10,11]:

∂αC(S, t)
∂tα

+
1
2
σ 2S2

∂2C(S, t)
∂S2

+ (r − D)S
∂C(S, t)

∂S
= rC(S, t), (S, t) ∈ (Bd, Bu) × (0, T ), (1a)

with the following boundary (barrier) and final conditions

C(Bd, t) = P(t), C(Bu, t) = Q (t), 0 < t < T , (1b)
C(S, T ) = V (S), Bd < S < Bu, (1c)

where r is the risk free rate, D the dividend rate and σ ≥ 0 is the volatility of the returns. The functions P and Q are the
rebates paid when the corresponding barrier is hit. The terminal payoff of the option is V (S). For example, a European double
barrier knock-out call option has P = 0 = Q and V (S) = (S − K )+ where K is the strike and (·)+ = max{·, 0}.

The fractional derivative in (1a) is a modified right Riemann–Liouville derivative defined as

∂αC(S, t)
∂tα

=

⎧⎪⎪⎨⎪⎪⎩
1

Γ (1 − α)
∂

∂t

∫ T

t

C(S, ξ ) − C(S, T )
(ξ − t)α

dξ 0 < α < 1

∂C(S, t)
∂t

α = 1.

We transform the problem to an initial value problem by using the time to maturity τ := T − t . Note that for 0 < α < 1 one
has

−
∂αC(S, t)

∂tα
=

1
Γ (1 − α)

∂

∂τ

∫ τ

0

C(S, T − η) − C(S, T )
(τ − η)α

dη := 0Dα
τ C(S, T − τ ).

When we put x = ln S, U(x, τ ) = C(ex, T − τ ), we find

0Dα
τ U(x, τ ) = a

∂2U(x, τ )
∂x2

+ b
∂U(x, τ )

∂x
− cU(x, τ ), (x, τ ) ∈ (0, +∞) × (0, T ), (2a)

where a =
1
2σ

2 > 0, b = r − a − D, c = r , and with the following boundary (barrier) and initial conditions

U(bd, τ ) = p(τ ), U(bu, τ ) = q(τ ), 0 < τ < T , (2b)
U(x, 0) = v(x), bd < x < bu. (2c)

In fact, the fractional derivative 0Dα
τ coincides with the Caputo fractional derivative for 0 < α ≤ 1, that is

0Dα
τ U(x, τ ) =

1
Γ (1 − α)

∂

∂τ

∫ τ

0

U(x, η) − U(x, 0)
(τ − η)α

dη =
1

Γ (1 − α)

∫ τ

0

∂U(x, η)
∂η

1
(τ − η)α

dη =
C
0D

α
τ U(x, τ ),

when U is continuous time differentiable.
We will develop a numerical scheme for the more general problem

a
∂2U(x, τ )

∂x2
+ b

∂U(x, τ )
∂x

= 0Dα
τ U(x, τ ) + cU(x, τ ) − f (x, τ ), (x, τ ) ∈ (0, +∞) × (0, T ). (3)

The outline of this paper is arranged in the following way: we introduce a step by step construction of the difference scheme
in the following section. Next, in the third section, the unique solvability, convergence and un-conditional stability for the
difference scheme are analyzed carefully. In the fourth section, numerical examples are given to illustrate the accuracy of
the presented scheme and to support our theoretical results. Finally, the paper ends with a conclusion and some remarks for
future work.

2. Construction of the difference scheme

A numerical solution based on a compact difference scheme is derived. Before we continue, some notations are fixed.
Take two positive integers M and N , let h =

bu−bd
M , 1τ =

T
N and denote xi = bd + i h for i = 0, . . . ,M , and τk = k1τ , for

k = 0, . . . ,N .
Based on Taylor expansion of V ∈ C4(bd, bu) we have

∂V (xi, τk)
∂x

=
V (xi+1, τk) − V (xi−1, τk)

2h  
:=δxV (xi,τk)

−
h2

6
∂3V (xi, τk)

∂x3
+ O(h4), (4a)
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and

∂2V (xi, τk)
∂x2

=
V (xi+1, τk) − 2V (xi, τk) + V (xi−1, τk)

h2  
:=δ2x V (xi,τk)

−
h2

12
∂4V (xi, τk)

∂x4
+ O(h4). (4b)

Using (4) in (3) we arrive in a grid point (xi, τk) at

aδ2xU(xi, τk) + bδxU(xi, τk) − Rk
i = g(xi, τk), (5)

with

Rk
i =

h2

12

(
a
∂4U(xi, τk)

∂x4
+ 2b

∂3U(xi, τk)
∂x3

)
+ O(h4), g(x, τ ) = 0Dα

τ U(x, τ ) + cU(x, τ ) − f (x, τ ).

Note that from (3)–(4) it follows that

∂3U(xi, τk)
∂x3

=
1
a

(
δxg(xi, τk) − bδ2xU(xi, τk)

)
+ O(h2) (6)

and invoking the latter

∂4U(xi, τk)
∂x4

=
1
a

(
δ2x g(xi, τk) −

b
a

(
δxg(xi, τk) − bδ2xU(xi, τk)

))
+ O(h2). (7)

When we substitute (6)–(7) in Rk
i and consequently in (5) we obtain

Rk
i =

h2

12

(
δ2x g(xi, τk) +

b
a
δxg(xi, τk) −

b2

a
δ2xU(xi, τk)

)
+ O(h4),

and (
a +

h2b2

12a

)
δ2xU(xi, τk) + bδxU(xi, τk) =

h2

12

(
δ2x g(xi, τk) +

b
a
δxg(xi, τk)

)
+ g(xi, τk) + O(h4), (8)

with g(x, τ ) = 0Dα
τ U(x, τ ) + cU(x, τ ) − f (x, τ ).

Next, it is clear that to obtain a numerical scheme, we need to approximate the Caputo derivative in g . This is based on a
result of Sun and Wu [13].

Lemma 2.1. Let u ∈ C2
[0, tk] and α ∈ (0, 1) then

0Dα
t u(xi, τk) =

1τ−α

Γ (2 − α)

⎛⎝cα
0 u(xi, τk) −

k−1∑
j=1

(cα
k−j−1 − cα

k−j)u(xi, τj) − cα
k−1u(xi, τ0)

⎞⎠+ O(1τ 2−α), (9)

where cα
j = (j + 1)1−α

− j1−α , and in fact, 1 = cα
0 > cα

1 > · · · > cα
j → 0 as j → +∞.

Proof. See [13,14]. □

We evaluate (8) at (xi, τk) with the help of (9) to obtain(
a +

h2b2

12a

)
δ2xU(xi, τk) + bδxU(xi, τk)

=
1τ−α

Γ (2 − α)

⎛⎝cα
0 u(xi, τk) −

k−1∑
j=1

(cα
k−j−1 − cα

k−j)u(xi, τj) − cα
k−1u(xi, τ0)

⎞⎠+ cU(xi, τk) − f (xi, τk)

+
h2

12

(
δ2x +

b
a
δx

)⎡⎣ 1τ−α

Γ (2 − α)

⎛⎝cα
0 u(xi, τk) −

k−1∑
j=1

(cα
k−j−1 − cα

k−j)u(xi, τj) − cα
k−1u(xi, τ0)

⎞⎠
+ cU(xi, τk) − f (xi, τk)

⎤⎦+ Rk
i , (10)

where the estimate⏐⏐Rk
i

⏐⏐ ≤ C(1τ 2−α
+ h4), (11)
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holds. Denote U(xi, tk) = Uk
i , µ =

1τ−α

Γ (2−α) and µ1 =
1
h2

(
a +

b2h2
12a

)
. When we omit Rk

i and doing some rearrangements, we
get the our final difference scheme[

µ1 −
µ + c
12

−
b
2h

+
bh
24a

(
µ + c

)]
Uk
i−1 +

[
−2µ1 −

10
12

(µ + c)
]
Uk
i +

[
µ1 −

µ + c
12

+
b
2h

−
bh
24a

(
µ + c

)]
Uk
i+1

=

⎡⎣−f ki −
1
12

(f ki−1 − 2f ki + f ki+1) −
bh
24a

(f ki+1 − f ki−1) − µ

⎛⎝ k−1∑
j=1

(cα
k−j−1 − cα

k−j)U
j
i + cα

k−1U
0
i

⎞⎠⎤⎦
−

µ

12

⎡⎣ k−1∑
j=1

(cα
k−j−1 − cα

k−j)(U
j
i−1 − 2U j

i + U j
i+1) + cα

k−1(U
0
i−1 − 2U0

i + U0
i+1)

⎤⎦
−

bµh
24a

⎡⎣ k−1∑
j=1

(cα
k−j−1 − cα

k−j)(U
j
i+1 − U j

i−1) + cα
k−1(U

0
i+1 − U0

i−1)

⎤⎦ , i = 1, 2, . . . ,M − 1, k = 1, 2, . . . ,N. (12)

3. Theoretical analysis of the difference scheme

In this section, we provide the uniqueness, stability and convergence theorems for the proposed difference scheme.

Theorem 1 (Solvability). The compact difference scheme (12) is uniquely solvable.

Proof. The compact difference scheme (12) can be written in a more concise form

AUk
= bk−1,

where the right hand side bk−1 depends only on the history Uk−1,Uk−2, . . . ,U0. The tridiagonal coefficient matrix A = (aij)
is strictly diagonally dominant because |aii| >

∑
j̸=i

⏐⏐aij⏐⏐, where

|aii| = 2µ1 +
10
12

(µ + c),
∑
j̸=i

⏐⏐aij⏐⏐ = 2µ1 +
2
12

(µ + c).

Therefore, the coefficient matrix is nonsingular and hence invertible. The theorem is now readily proved by strong
induction. □

The stability analysis of the proposed difference scheme (12) will be discussed in terms of a Fourier analysis as in [11] which
in turn goes back to also [15,16]. Let Ûk

i be an approximate solution of (12) and define ϵk
i = Uk

i − Ûk
i for i = 0, 1, . . . ,M ,

k = 0, 1, . . . ,N . The roundoff error equation in terms of ϵk
i can be obtained from (12), namely[

µ1 −
µ + c
12

−
b
2h

+
bh
24a

(
µ + c

)]
ϵk
i−1 +

[
−2µ1 −

10
12

(µ + c)
]

ϵk
i +

[
µ1 −

µ + c
12

+
b
2h

−
bh
24a

(
µ + c

)]
ϵk
i+1

= −µ

⎛⎝ k−1∑
j=1

(cα
k−j−1 − cα

k−j)ϵ
j
i + cα

k−1ϵ
0
i

⎞⎠−
µ

12

⎡⎣ k−1∑
j=1

(cα
k−j−1 − cα

k−j)(ϵ
j
i−1 − 2ϵ j

i + ϵ
j
i+1) + cα

k−1(ϵ
0
i−1 − 2ϵ0

i + ϵ0
i+1)

⎤⎦
−

bµh
24a

⎡⎣ k−1∑
j=1

(cα
k−j−1 − cα

k−j)(ϵ
j
i+1 − ϵ

j
i−1) + cα

k−1(ϵ
0
i+1 − ϵ0

i−1)

⎤⎦ , (13)

and ϵk
0 = ϵk

M = 0. The grid function

ϵk(x) :=

⎧⎪⎨⎪⎩
ϵk
i xi −

h
2

< x ≤ xi +
h
2

0 Bd ≤ x ≤ Bd +
h
2
or Bu −

h
2

< x ≤ Bu,

can be expanded in a Fourier series

ϵk(x) =

+∞∑
l=−∞

dk(l) exp(i 2π lx/L), k = 1, 2, . . .,N, dk(l) =
1
L

∫ L

0
ϵk(x) exp(− i 2π lx/L)dx,
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where L = Bu − Bd and i2 = −1. Let ϵk
=
(
ϵk
1, ϵ

k
2, . . . , ϵ

k
M−1

)
∈ CM−1, with the following norm

ϵk

2 =

(
M−1∑
i=1

h
⏐⏐ϵk

i

⏐⏐2)1/2

=

[∫ L

0

⏐⏐ϵk(x)
⏐⏐2dx]1/2.

The application of the Parseval identity leads toϵk
2
2 =

+∞∑
l=−∞

|dk(l)|2. (14)

Based on the above analysis, we suppose that the solution of (12) has the following form

ϵk
j = dk exp(i σ jh), σ =

2π l
L

.

Substituting the above formula into (13) we arrive at

dk =
−µ +

µ

3 sin
2 σh

2 −
bhµ i
12a sin(σh)(

−4µ1 +
µ+c
3

)
sin2 σh

2 +
( b i

h −
bh i
12a (µ + c)

)
sin(σh) − (µ + c)

⎛⎝ k−1∑
j=1

(
cα
k−j−1 − cα

k−j

)
dj + cα

k−1d0

⎞⎠ . (15)

Lemma 3.1. The following estimate holds⏐⏐⏐⏐⏐⏐ −µ +
µ

3 sin
2 σh

2 −
bhµ i
12a sin(σh)(

−4µ1 +
µ+c
3

)
sin2 σh

2 +
( b i

h −
bh i
12a (µ + c)

)
sin(σh) − (µ + c)

⏐⏐⏐⏐⏐⏐ ≤ 1. (16)

Proof. We know that h ≤ 1, 1τ ≤ 1 and 0 < α < 1 so µ > 0. Also if r < a then µ1 > b
a . Inequality (16) holds iff⏐⏐⏐⏐−µ +

µ

3
sin2 σh

2
−

bhµ i
12a

sin(σh)
⏐⏐⏐⏐ ≤

⏐⏐⏐⏐(−4µ1 +
µ + c

3

)
sin2 σh

2
+

(
b i
h

−
bh i
12a

(µ + c)
)
sin(σh) − (µ + c)

⏐⏐⏐⏐ ,
or equivalent

(−4µ1S)2 − 8µ1S
(
−µ +

µ

3
S
)

− 4µ1S
(
−c +

c
3
S
)

+

(
−

b
6a

µ −
b

12a
c +

b
h2

)
sin2(σh) ≥ 0,

with S := sin2 ( σh
2

)
. Since

−
b
6a

µsin2(σh) =
2b
3a

µS2 −
2b
3a

µS and −
b

12a
csin2(σh) =

2b
6a

cS2 −
2b
6a

cS,

inequality (16) holds iff

(4µ1S)2 + 8µ1S
(
µ −

µ

3
S
)

+ (4µ1S)
(
c −

c
3
S
)

+

(
2b
3a

µS2 −
2b
3a

µS
)

+

(
2b
6a

cS2 −
2b
6a

cS
)

+
b2

h2 sin
2(σh) ≥ 0,

or equivalent

(4µ1S)2 +

(
8
3
µµ1S −

8
3
µµ1S2

)
+

(
2
3
µµ1S −

2b
3a

µS
)

+
2b
3a

µS2 +
14
3

µµ1S +

(
4
3
cµ1S −

4
3
cµ1S2

)
+

(
2
6
µ1cS −

2b
6a

cS
)

+
2b
6a

cS2 +
14
6

µ1cS +
b2

h2 sin
2(σh) ≥ 0.

All parts of the previous inequality are positive. Indeed,(
8
3
µµ1S −

8
3
µµ1S2

)
=

8
3
µµ1S cos2

σh
2

≥ 0,
(
4
3
cµ1S −

4
3
cµ1S2

)
=

4
3
cµ1S cos2

σh
2

≥ 0,

and (
2
3
µµ1S −

2b
3a

µS
)

=
2
3
µS
(

µ1 −
b
a

)
,

(
2
6
µ1cS −

2b
6a

cS
)

=
2
6
µS
(

µ1 −
b
a

)
≥ 0. □

Lemma 3.2. Suppose that dk, k = 1, 2, . . . ,N, are the solutions of Eq. (15), we have

|dk| ≤ |d0| . (17)
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Proof. Strong mathematical induction is used to prove (17). For k = 1 in (15), we have

d1 =

(
−µ +

µ

3 sin
2 σh

2 −
bhµ i
12a sin(σh)

)
cα
0 d0(

−4µ1 +
µ+c
3

)
sin2 σh

2 +
( b i

h −
bh i
12a (µ + c)

)
sin(σh) − (µ + c)

, cα
0 = 1.

Suppose that |dn| ≤ |d0|, for n = 1, 2, . . . , k − 1. Based on (15), we can write

|dk| ≤

⏐⏐⏐⏐⏐⏐ −µ +
µ

3 sin
2 σh

2 −
bhµ i
12a sin(σh)(

−4µ1 +
µ+c
3

)
sin2 σh

2 +
( b i

h −
bh i
12a (µ + c)

)
sin(σh) − (µ + c)

⏐⏐⏐⏐⏐⏐
⎛⎝ k−1∑

j=1

(
cα
k−j−1 − cα

k−j

)
|d0| + cα

k−1|d0|

⎞⎠ .

Invoking estimate (16) we obtain

|dk| ≤

(
cα
0 − cα

k−1

)
|d0| + cα

k−1|d0|,

which coincides with the aim of the theorem. □

Theorem 2 (Stability). The compact difference scheme (12) is unconditionally stable.

Proof. From Lemmata 3.1 and 3.2, we deduceϵk
2
2 =

∞∑
l=−∞

|dk(l)|2 ≤

∞∑
l=−∞

|d0(l)|2 =
ϵ0

2
2 .

Hence,
ϵk

2 ≤

ϵ0

2 and the unconditional stability of the proposed scheme is achieved. □

To conclude, we proof that the difference scheme (12) converges with time accuracy of order 2−α and spatial order of four.
We define the grid functions

ek(x) =

⎧⎪⎨⎪⎩
eki xi −

h
2

< x ≤ xi +
h
2
, i = 1, 2, . . . ,M − 1

0 Bd ≤ x ≤ Bd +
h
2

or Bu −
h
2

< x ≤ Bu

and

Rk(x) =

⎧⎪⎨⎪⎩
Rk
i xi −

h
2

< x ≤ xi +
h
2
, i = 1, 2, . . . ,M − 1

0, Bd ≤ x ≤ Bd +
h
2

or Bu −
h
2

< x ≤ Bu.

As above, we can write the following series expansions

ek(x) =

∞∑
l=−∞

ηk(l) exp(i 2π lx/L), k = 0, 1, . . .,N,

Rk(x) =

∞∑
l=−∞

ξk(l) exp(i 2π lx/L), k = 0, 1, . . .,N.

Define the following

eki = u(xi, tk) − Uk
i , k = 0, 1, . . . ,N, j = 0, 1, . . . ,M,

ek =
[
ek1, e

k
2, . . . , e

k
M−1

]
, Rk

=
[
Rk
1, R

k
2, . . . , R

k
M−1

]
, k = 1, 2, . . . ,N,

and introduce the norms

ek2 =

(
M−1∑
i=1

h
⏐⏐eki ⏐⏐2

)1/2

=

[∫ L

0

⏐⏐ek(x)⏐⏐2dx]1/2, k = 0, 1, . . . ,N,

Rk

2 =

(
M−1∑
i=1

h
⏐⏐Rk

i

⏐⏐2)1/2

=

[∫ L

0

⏐⏐Rk(x)
⏐⏐2dx]1/2, k = 0, 1, . . . ,N. (18)
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An application of the Parseval identity leads toek22 =

∞∑
l=−∞

|ηk(l)|2, k = 0, 1, . . . ,N, (19)

∥Rk
∥
2
2 =

∞∑
l=−∞

|ξk(l)|2, k = 0, 1, . . . ,N. (20)

Also, (11) gives⏐⏐Rk
i

⏐⏐ ≤ C
(
1τ 2−α

+ h4) . (21)

Subtracting (12) from (10), we get[
µ1 −

µ + c
12

−
b
2h

+
bh
24a

(
µ + c

)]
eki−1 +

[
−2µ1 −

10
12

(µ + c)
]
eki

+

[
µ1 −

µ + c
12

+
b
2h

−
bh
24a

(
µ + c

)]
eki+1

=

⎡⎣−µ

⎛⎝ k−1∑
j=1

(cα
k−j−1 − cα

k−j)e
j
i

⎞⎠⎤⎦−
µ

12

⎡⎣ k−1∑
j=1

(cα
k−j−1 − cα

k−j)(e
j
i−1 − 2eji + eji+1) + cα

k−1(e
0
i−1 − 2e0i + e0i+1)

⎤⎦
−

bµh
24a

⎡⎣ k−1∑
j=1

(cα
k−j−1 − cα

k−j)(e
j
i+1 − eji−1) + cα

k−1(e
0
i+1 − e0i−1)

⎤⎦+ Rk
i , (22)

with

ek0 = ekM = 0, k = 1, 2, . . . ,N − 1, (23)

e0i = 0, i = 1, 2, . . . ,M − 1. (24)

Based on the above analysis, we assume that eki and Rk
i are written as follows

eki = ηk exp(i σ ih), Rk
i = ξk exp(i σ ih), σ =

2π l
L

.

Substituting the above relations into (22) gives

ηk =
−µ +

µ

3 sin
2 σh

2 −
bhµ i
12a sin(σh)(

−4µ1 +
µ+c
3

)
sin2 σh

2 +
( b i

h −
bh i
12a (µ + c)

)
sin(σh) − (µ + c)

⎛⎝ k−1∑
j=1

(
cα
k−j−1 − cα

k−j

)
ηj

⎞⎠
+

ξk(
−4µ1 +

µ+c
3

)
sin2 σh

2 +
( b i

h −
bh i
12a (µ + c)

)
sin(σh) − (µ + c)

, (25)

and noticing that e0 = 0 we have η0 = 0.
From (18) and (21), we obtainRk


2 ≤

√
MhC1

(
1τ 3−α

+ h4)
=

√
LC1

(
1τ 2−α

+ h4) . (26)

Due to the convergence of the series on the right hand side of (20), there exists a positive constant c2 such that

|ξk| ≡ |ξk(n)| ≤ c21τ |ξ1(n)| , k = 1, 2, . . . ,N. (27)

Similar to the proof of Lemma 3.1 we can prove the estimate:

Lemma 3.3. The following relation holds
1(

4µ1sin2 σh
2 + (µ + c) −

µ+c
3 sin2 σh

2

)2
+
( b
h sin(σh) −

bh
12a (µ + c) sin(σh)

)2 ≤ 9. (28)

Lemma 3.4. Suppose that ηk, k = 1, 2, . . . ,N, are the solutions of (25), then there exists a positive constant C2 such that

|ηk| ≤ C2(1 + 31τ)k |ξ1| .



R.H. De Staelen, A.S. Hendy / Computers and Mathematics with Applications 74 (2017) 1166–1175 1173

Proof. Strong mathematical induction will be used. From (25), (27) and (28), we get

|η1|
2

≤
|ξ1|

2(
4µ1sin2 σh

2 + (µ + c) −
µ+c
3 sin2 σh

2

)2
+
( b
h sin(σh) −

bh
12a (µ + c) sin(σh)

)2 ≤ 91τ 2C2
2 |ξ1|

2,

hence, |η1| ≤ 31τC2 |ξ1| ≤ (1 + 31τ )C2 |ξ1|. Now, let

|ηn| ≤ (1 + 31τ)nC2 |ξ1| , n = 1, 2, . . . , k − 1.

Using (16), (27) and (28) in (25) we obtain

|ηk| ≤

⏐⏐−µ +
µ

3 sin
2 σh

2 −
bhµ i
12a sin(σh)

⏐⏐⏐⏐⏐(−4µ1 +
µ+c
3

)
sin2 σh

2 +
( b i

h −
bh i
12a (µ + c)

)
sin(σh) − (µ + c)

⏐⏐⏐
⏐⏐⏐⏐⏐⏐
k−1∑
j=1

(
cα
k−j−1 − cα

k−j

)
ηj

⏐⏐⏐⏐⏐⏐
+

|ξk|⏐⏐⏐(−4µ1 +
µ+c
3

)
sin2 σh

2 +
( b i

h −
bh i
12a (µ + c)

)
sin(σh) − (µ + c)

⏐⏐⏐
≤

k−1∑
j=1

(
cα
k−j−1 − cα

k−j

)
(1 + 31τ)jC2 |ξ1| + 3C21τ |ξ1| .

The proof is concluded by observing that

|ηk| ≤ (1 + 31τ)k−1C2 |ξ1|

k−1∑
j=1

(
cα
k−j−1 − cα

k−j

)
+ 3C21τ |ξ1| ,

≤ (1 + 31τ)k−1C2 |ξ1|
(
1 − cα

k−1

)
+ (1 + 31τ) C2 |ξ1| ≤ (1 + 31τ)kC2 |ξ1| . □

Theorem 3 (Convergence). Assume that u(x, t) is the exact solution of (3), then the compact difference scheme (12) is
L2-convergent with convergence order O(1τ 2−α

+ h4).

Proof. Consider Lemma 3.4 and combine (19), (20) and (26), to obtainek2 ≤ (1 + 31τ)kC2
R1


2 ≤ C1

√
LC2 exp(3k1τ )

(
1τ 2−α

+ h4) .
Since k1τ ≤ T , we obtain

ek2 ≤ C
(
1τ 2−α

+ h4
)
, where C = c1c2

√
L exp(3T ). □

4. Numerical experiments

To demonstrate the accuracy of the solution and the order of convergence of our proposed difference scheme, we
introduce two examples exhibiting an exact solution.

Let uk
i = u(k1τ , h, ) be the solution of the constructed difference scheme (12) with the step size 1τ in time and h in

space. Define the maximum norm error by

E(1τ , h) = max
0≤i≤M
0≤k≤N

Uk
i − uk

i


∞

,

and the following error rates, rate1τ = log2
(

E(21τ ,h)
E(1τ ,h)

)
, rateh = log2

(
E(τ ,2h)
E(τ ,h)

)
. We reconsider two numerical examples which

appeared in [11] and compare.

4.1. Example 1

Consider the following time fractional model

Dα
τ U(x, τ ) = a

∂2U(x, τ )
∂x2

+ b
∂U(x, τ )

∂x
− cU(x, τ ) + f (x, τ ),

with the following initial and boundary conditions

U(x, 0) = x2(1 − x), U(0, τ ) = U(1, τ ) = 0

such that the source term

f (x, τ ) =

(
2τ 2−α

Γ (3 − α)
+

2τ 1−α

Γ (2 − α)
x2(1 − x) − (τ + 1)2

[
a(2 − 6x) + b(2x − 3x2) − cx2(1 − x)

])
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Table 1
Errors and convergence orders of the numerical solution for Example 1.

(a)M = 150 (b) N = 1000

τ E(1τ , h) rate1τ h E(1τ , h) rateh
1
10 0.0035 1

4 0.0028
1
20 0.00144 1.28 1

8 0.00019 3.875
1
40 0.00059 1.29 1

16 0.000013 3.889
1
80 0.00024 1.295 1

32 8.33475 × 10−7 3.95
1

160 0.000095 1.315 1
64 4.76035 × 10−8 4.13

1
320 0.000038 1.32 1

128 2.38336 × 10−9 4.32

Table 2
Errors and convergence orders of the numerical solution for Example 2.

(a)M = 150 (b) N = 1000

τ E(1τ , h) rate1τ h E(1τ , h) rateh
1
10 0.0052 1

4 0.0125
1
20 0.00207 1.33 1

8 0.00079 3.98
1
40 0.00083 1.315 1

16 0.00005 3.995
1
80 0.00033 1.34 1

32 3.0412 × 10−6 4.03
1

160 0.00013 1.36 1
64 1.79822 × 10−7 4.08

1
320 0.00005 1.38 1

128 9.6493 × 10−9 4.22

is chosen such that the exact solution of this problem is

U(x, τ ) = (τ + 1)2x2(1 − x2).

The parameters values are chosen as r = 0.05, σ = 0.25, α = 0.7, a =
σ2

2 , b = r − a, c = r and T = 1. The results are
shown in Table 1.

4.2. Example 2

The second example has nonhomogeneous boundary conditions;

Dα
τ U(x, τ ) = a

∂2U(x, τ )
∂x2

+ b
∂U(x, τ )

∂x
− cU(x, τ ) + f (x, τ ),

with the following initial and boundary conditions

U(x, 0) = x3 + x2 + 1, U(0, τ ) = (τ + 1)2, U(1, τ ) = 3(τ + 1)2

such that the source term

f (x, τ ) =

(
2τ 2−α

Γ (3 − α)
+

2τ 1−α

Γ (2 − α)
(x3 + x2 + 1) − (t + 1)2

[
a(6x + 2) + b(3x2 + 2x) − c(x3 + x2 + 1)

])
is chosen such that the exact solution of this problem is

U(x, τ ) = (τ + 1)2(x3 + x2 + 1).

The parameters values are chosen as r = 0.5, α = 0.7, a = 1, b = r − a, c = r and T = 1. The results are shown in Table 2.
Both examples support the theoretical results established in Theorem 3, that is, an order of convergence in time of

2 − 0.7 = 1.3 and of order 4 in space.

5. Conclusions

The time fractional B–Smodel is a generalization of the classical B–Smodel. An implicit numerical schemewith a temporal
accuracy of order 2 − α and spatial accuracy of fourth order is constructed to approximate the time fractional B–S model. It
is proved that the implicit numerical scheme is unconditional stable and convergent by using the Fourier analysis method.
Two numerical examples with exact solutions are chosen in order to illustrate the accuracy and convergence order of the
numerical method. The numerical technique presented in this paper can be extended to other fractional models for pricing
different European options.
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