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1. Introduction

Consider the stochastic differential equation (SDE) in the Itô sense

dX ¼ a(s, X ) ds þ � (s, X ) dW (s), t0 < s < T , (1:1)

where X ¼ (X 1, . . . , X d)T, a ¼ (a1, . . . , ad)T are d-dimensional vectors, W ¼ (W 1,

. . . , W m)T is an m-dimensional standard Wiener process, and � ¼ f� ijg is a d 3 m matrix,

m > d. We assume that the d 3 d matrix b :¼ �� T, b ¼ fbijg, is of full rank and, moreover,

that the uniform ellipticity condition holds: there exists Æ . 0 such that

k � (s, x)� T(s, x)
� ��1k < Æ�1 (1:2)

for all (s, x), s 2 t0, T ], x 2 Rd
�

and some Æ . 0. The functions ai(s, x) and � ij(s, x) are

assumed to satisfy the same regularity conditions as in Bally and Talay (1996b), that is, their

derivatives of any order exist and are bounded. In particular, this implies existence and

uniqueness of the solution X t,x(s) 2 Rd , X t,x(t) ¼ x, t0 < t < s < T , of (1.1), smoothness of

the transition density p(t, x, s, y) of the Markov process X , and existence of exponential

bounds for the density and its derivatives with respect to t . t0, x, y.

The aim of this paper is the construction of a Monte Carlo estimator of the unknown

transition density p(t, x, T , y) for fixed t, x, T , y, which improves upon classical kernel or

projection estimators based on realizations of X t,x(T ) directly.
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Classical Monte Carlo methods allow for effective estimation of functionals of the form

I( f ) ¼
ð

p(t, x, T , y) f (y) dy (1:3)

for smooth functions f not increasing too rapidly. These methods exploit the probabilistic

representation I( f ) ¼ E f (X t,x(T )). Let X t,x be an approximation of the process X t,x and let

X
(n)
t,x (T ), for n ¼ 1, . . . , N, be independent realizations of X t,x(T ). Then, provided the

accuracy of the approximation of X t,x by X t,x is sufficiently good, I( f ) may be estimated by

�̂II�II ¼ 1

N

XN

n¼1

f X
(n)
t,x (T )

� �

with root-N accuracy, that is a statistical error of order N�1=2.

The problem of estimating the transition density of a diffusion process is more involved;

see Bally and Talay (1996a), Hu and Watanabe (1996) and Kohatsu-Higa (1997). For an

approximation X t,x, it is natural to expect that its transition density p(t, x, T , y) is an

approximation of p(t, x, T , y). Indeed, if X t,x(T , h) is the approximation of X t,x(T )

obtained via numerical integration by the strong Euler scheme with time step h, then the

density ph(t, x, T , y) converges to p(t, x, T , y) uniformly in y when the step size h tends

to zero. More precisely:

p(t, x, T , y) � ph(t, x, T , y) ¼ hC(t, x, T , y) þ h2 Rh(t, x, T , y), (1:4)

with

jC(t, x, T , y)j þ jRh(t, x, T , y)j < K

(T � t)q
exp �c

jx � yj2
T � t

� �
,

where K, c, q are some positive constants; see Bally and Talay (1996b). Strictly speaking,

(1.4) is derived in Bally and Talay (1996b) for autonomous systems. However, there is no

doubt that under our assumptions of smoothness, boundedness and uniform ellipticity this

result holds for the non-autonomous case as well.

Further, Hu and Watanabe (1996) and Kohatsu-Higa (1997) show that the quantity

~pph(t, x, T , y) ¼ E�h(X t,x(T , h) � y),

with �h(x) ¼ (2�h2)�d=2 expf�jxj2=(2h2)g, converges to p(t, x, T , y) as h ! 0. Hu and

Watanabe (1996) used schemes of numerical integration in the strong sense, while Kohatsu-

Higa (1997) applied numerical schemes in a weak sense. Combining this result with the

classical Monte Carlo methods leads to the following estimator of the transition density:

~̂pp~pp (t, x, T , y) ¼ 1

N

XN

n¼1

�h X n � y
� �

, (1:5)

where X n ¼ X
(n)
t,x (T , h), n ¼ 1, . . . , N , are independent realizations of X t,x(T , h).

More generally, one may estimate the transition density p(t, x, T , y) from the sample

X n ¼ X
(n)
t,x (T ) by using standard methods of nonparametric statistics. For example, the
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kernel (Parzen–Rosenblatt) density estimator with a kernel K and a bandwidth � is given

by

p̂p(t, x, T , y) ¼ 1

N�d

XN

n¼1

K
X n � y

�

� �
; (1:6)

see, for example, Devroye and Györfi (1985), Silverman (1986) or Scott (1992). Of course, in

reality we have only the approximation X n instead of X n and so we obtain the estimator

�̂pp�pph (t, x, T , y) ¼ 1

N�d

XN

n¼1

K
X n � y

�

� �
: (1:7)

Clearly, proposal (1.5) is a special case of estimator (1.7) with kernel K being the standard

normal density and bandwidth � equal to the step of numerical integration h.

The estimation loss �̂pp�pph(t, x, T , y) � p(t, x, T , y) can be split into an error �̂pp�pph � p̂p due to

numerical approximation of the process X by X and an error p̂p � p due to the kernel

estimation which depends on the sample size N , the bandwidth � and the kernel K. The

loss of the first kind can be reduced considerably by properly selecting a scheme of

numerical integration and choosing a small step h. The more important loss, however, is

caused by the kernel estimation. It is well known that the quality of density estimation

strongly depends on the bandwidth � and the choice of a suitable bandwidth is a delicate

issue (see Devroye and Györfi 1985). Even an optimal choice of the bandwidth � leads to

quite poor estimation quality, particularly for large dimension d. More specifically, if the

underlying density is known to be twice continuously differentiable then the optimal

bandwidth � is of order N�1=(4þd), leading to accuracy of order N�2=(4þd); see Bretagnolle

and Carol-Huber (1979), Scott (1992) or Silverman (1986). For larger d, this would require

a huge sample size N to provide reasonable accuracy of estimation. In the statistical

literature this problem is referred to as the ‘curse of dimensionality’.

In this paper we propose a method of density estimation which is generally root-N

consistent and thus avoids the curse of dimensionality. In Section 2 we consider

probabilistic representations for the functionals I( f ) in (1.3), which provide different

Monte Carlo methods for the evaluation of I( f ) . We also show how the variance of the

Monte Carlo estimation can be reduced by the choice of a suitable probabilistic

representation. Then, in Section 3, we introduce the reverse diffusion process in order to

derive probabilistic representations for functionals of the form

I�(g) ¼
ð

g(x) p(t, x, T , y) dx: (1:8)

Clearly, the ‘curse of dimensionality’ is not encountered in the estimation of functionals

I( f ) in (1.3) using forward representations. Similarly, as we shall see in Section 3, Monte

Carlo estimation of functionals of the form (1.8) via probabilistic representations based on

reverse diffusion can also be carried out with root-N accuracy. These important features

have been utilized in the central theme of this paper, the development of a new method for

estimating the transition density p(t, x, T , y) of a diffusion process which generally allows

for root-N consistent estimation for prespecified values of t, x, T and y (we emphasize that
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the problem of estimating p(t, x, T , y) for fixed t, x, T and y is more difficult than the

problem of estimating the integrals I( f ), I( f , g) or I�(g)). This method, which is

presented in Section 4, is based on a combination of forward representation (1.3) and

reverse representation (1.8) via the Chapman–Kolmogorov equation and has led to two

different types of estimators called kernel and projection estimators. General properties of

these estimators are studied in Sections 6 and 7. Before that, in Section 5, we demonstrate

the advantages of combining the forward and reverse diffusion for transition density

estimation in a simple one-dimensional example. We show by an explicit analysis of an

Ornstein–Uhlenbeck type process that root-N accuracy can be achieved.

Throughout Sections 5–7 all results are derived with respect to exact solutions of the

respective SDEs. In Section 8 we study in particular the estimation loss due to application

of the strong Euler scheme with discretization step h of various kernel estimators and find

that this loss is of order O(h), uniform in the bandwidth �.

In Section 9 we compare the computational complexity of the forward–reverse estimators

with pure forward estimators and give some numerical results for the example in Section 5.

We conclude that, in general, for the problem of estimating the transition density between

two particular states the forward–reverse estimator outperforms the usual estimator based on

forward diffusion only.

2. Probabilistic representations based on forward diffusion

In this section we present a general probabilistic representation and the corresponding

Monte Carlo estimator for a functional of the form (1.3). We also show that the variance of

the Monte Carlo method can be reduced by choosing a proper representation.

For a given function f , the function

u(t, x) ¼ E f (X t,x(T )) ¼
ð

p(t, x, T , y) f (y) dy (2:1)

is the solution of the Cauchy problem for the parabolic equation

Lu :¼ @u

@ t
þ 1

2

Xd

i, j¼1

bij(t, x)
@2u

@xi@x j
þ
Xd

i¼1

ai(t, x)
@u

@xi
¼ 0, u(T , x) ¼ f (x):

Via the probabilistic representation (2.1), u(t, x) may be computed by Monte Carlo

simulation using weak methods for numerical integration of SDE (1.1). Let X be an

approximation of the process X in (1.1), obtained by some numerical integration scheme.

With X
(n)
t,x (T ) being independent realizations of X t,x(T ), the value u(t, x) can be estimated by

�̂uu�uu ¼ 1

N

XN

n¼1

f X
(n)
t,x (T )

� �
: (2:2)

Moreover, by taking a random initial value X (t) ¼ �, where the random variable � has a

density g, we obtain a probabilistic representation for integrals of the form
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I( f , g) ¼
ðð

g(x) p(t, x, T , y) f (y) dx dy: (2:3)

The estimation error j �̂uu�uu � uj of the estimator �̂uu�uu in (2.2) is due to the Monte Carlo method

and to the numerical integration of SDE (1.1). The second error can be reduced by

selecting a suitable method and step of numerical integration. The first one, the Monte

Carlo error, is of order fN�1 var f (X t,x(T ))g1=2 ’ fN�1 var f (X t,x(T ))g1=2 and can, in

general, be reduced by using variance reduction methods. Variance reduction methods can

be derived from the following generalized probabilistic representation for u(t, x):

u(t, x) ¼ E [ f (X t,x(T ))X t,x(T ) þ X t,x(T )], (2:4)

where X t,x(s), X t,x(s), X t,x(s), s > t, is the solution of the system of SDEs given by

dX ¼ (a(s, X ) � � (s, X )h(s, X )) ds þ � (s, X ) dW (s), X (t) ¼ x,

dX ¼ hT(s, X )X dW (s), X (t) ¼ 1,

dX ¼ F T(s, X )X dW (s), X(t) ¼ 0:

(2:5)

In (2.5), X and X are scalars, and h(t, x) ¼ (h1(t, x), . . . , hm(t, x))T 2 Rm and F(t, x) ¼
(F 1(t, x), . . . , F m(t, x))T 2 Rm are vector functions satisfying some regularity conditions

(for example, they are sufficiently smooth and have bounded derivatives). The usual

probabilistic representation (2.1) is a particular case of (2.4)–(2.5) with h ¼ 0, F ¼ 0; see,

for example, Dynkin (1965). The representation for h 6¼ 0, F ¼ 0 follows from Girsanov’s

theorem and then we obtain (2.4) since EX ¼ 0.

Consider the random variable � :¼ f (X t,x(T ))X t,x(T ) þ X t,x(T ). While the mathematical

expectation E � does not depend on h and F, the variance var � ¼ E �2 � (E �)2 does. The

Monte Carlo error in the estimation of (2.4) is of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1 var �

p
and so by reduction of

the variance var � the Monte Carlo error may be reduced. Two variance reduction methods

are well known: the method of importance sampling where F ¼ 0 (see Milstein 1995;

Newton 1994; Wagner 1988), and the method of control variates where h ¼ 0 (see Newton

1994). For both methods it is shown that for a sufficiently smooth function f the variance

can be reduced to zero. A more general statement by Milstein and Schoenmakers (2002) is

given in Theorem 2.1 below. Introduce the process

�(s) ¼ u(s, X t,x(s))X t,x(s) þ X t,x(s), t < s < T :

Clearly �(t) ¼ u(t, x) and �(T ) ¼ f (X t,x(T ))X t,x(T ) þ X t,x(T ).

Theorem 2.1. Let h and F be such that for any x 2 Rd there is a solution to the system (2.5)

on the interval [t, T ]. Then the variance var�(T ) is equal to

var �(T ) ¼ E

ðT

t

X 2
t,x(s)

Xm

j¼1

Xd

i¼1

� ij @u

@xi
þ uh j þ F j

 !2

ds (2:6)

provided that the mathematical expectation in (2.6) exists.

Transition density estimation for stochastic differential equations 285



In particular, if h and F satisfy

Xd

i¼1

� ij @u

@xi
þ uh j þ F j ¼ 0, j ¼ 1, . . . , m,

then var �(T ) ¼ 0 and �(s) is deterministic and independent of s 2 [t, T ].

Proof. The Itô formula implies

d�(s) ¼ X t,x(s)(Lu) ds þ X t,x(s)
Xm

j¼1

Xd

i¼1

� ij @u

@xi
þ uh j þ F j

 !
dW j(s),

and then by Lu ¼ 0 we have

�(s) ¼ �(t) þ
ð s

t

X t,x(s9)
Xm

j¼1

Xd

i¼1

� ij @u

@xi
þ uh j þ F j

 !
dW j(s9):

Hence, (2.6) follows and the last assertion is obvious. h

Remark 2.1. Clearly, h and F in Theorem 2.1 cannot be constructed without knowing u(s, x).

Nevertheless, the theorem claims a general possibility of variance reduction by proper choice

of the functions h j and F j, j ¼ 1, . . . , m.

3. Representations relying on reverse diffusion

In the previous section a broad class of probabilistic representations for the integral

functionals I( f ) ¼
Ð

f (y) p(t, x, T , y) dy, and more generally for the functionals I( f , g) ¼Ð Ð
g(x) p(t, y, T , y) f (y) dx dy, is described. Another approach is based on the so-called

reverse diffusion and was introduced by Thomson (1987) (see also Kurbanmuradov et al.

1999; 2001). In this section we derive the reverse diffusion system in a more transparent

and more rigorous way. The method of reverse diffusion provides a probabilistic

representation (hence a Monte Carlo method) for functionals of the form

I�(g) ¼
ð

g(x) p(t, x, T , y) dx, (3:1)

where g is a given function. This representation may easily be extended to the functionals

I( f , g) from (2.3).

For a given function g and fixed t we define

v(s, y) :¼
ð

g(x9) p(t, x9, s, y) dx9, s . t,

and consider the Fokker–Planck equation (forward Kolmogorov equation) for p(t, x, s, y),
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@ p

@s
¼ 1

2

Xd

i, j¼1

@2

@ yi@ y j
(bij(s, y) p) �

Xd

i¼1

@

@ yi
(ai(s, y) p):

Then, multiplying this equation by g(x) and integrating with respect to x yields the following

Cauchy problem for the function v(s, y):

@v

@s
¼ 1

2

Xd

i, j¼1

@2

@ yi@ y j
(bij(s, y)v) �

Xd

i¼1

@

@ yi
(ai(s, y)v), s . t,

v(t, y) ¼ g(y):

We introduce the reversed time variable ~ss ¼ T þ t � s and define

~vv(~ss, y) ¼ v(T þ t � ~ss, y),

~aai(~ss, y) ¼ ai(T þ t � ~ss, y),

~bbij(~ss, y) ¼ bij(T þ t � ~ss, y):

Clearly, v(T , y) ¼ ~vv(t, y) and

@~vv

@~ss
þ 1

2

Xd

i, j¼1

@2

@ yi@ y j
(~bbij(~ss, y)~vv) �

Xd

i¼1

@

@ yi
(~aai(~ss, y)~vv) ¼ 0, ~ss , T ,

~vv(T , y) ¼ v(t, y) ¼ g(y): (3:2)

Since bij ¼ b ji and so ~bbij ¼ ~bb ji, the partial differential equation in (3.2) may be written in the

form (with s instead of ~ss)

~LL~vv :¼ @~vv

@s
þ 1

2

Xd

i, j¼1

~bbij(s, y)
@2~vv

@ yi@ y j
þ
Xd

i¼1

Æi(s, y)
@~vv

@ yi
þ c(s, y)~vv ¼ 0, s , T , (3:3)

where

Æi(s, y) ¼
Xd

j¼1

@ ~bbij

@ y j
� ~aai, c(s, y) ¼ 1

2

Xd

i, j¼1

@2 ~bbij

@ yi@ y j
�
Xd

i¼1

@ ~aai

@ yi
: (3:4)

We thus obtain a Cauchy problem in reverse time and may state the following result.

Theorem 3.1. I�(g) has a probabilistic representation

I�(g) ¼ v(T , y) ¼ ~vv(t, y) ¼ E[g(Yt, y(T ))Yt, y(T )], (3:5)

where the vector process Yt, y(s) 2 Rd and the scalar process Yt, y(s) solve the stochastic

system

dY ¼ Æ(s, Y ) ds þ ~�� (s, Y ) d ~WW (s), Y (t) ¼ y,

dY ¼ c(s, Y )Y ds, Y(t) ¼ 1,
(3:6)

with ~�� (s, y) ¼ � (T þ t � s, y) and ~WW being an m-dimensional standard Wiener process.
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It is natural to call (3.6) the reverse system of (1.1). The probabilistic representation

(3.5)–(3.6) for the integral (3.1) leads naturally to the Monte Carlo estimator �̂vv�vv for v(T , y),

�̂vv�vv ¼ 1

M

XM

m¼1

g Y
(m)
t, y (T )

� �
Y (m)

t, y (T ), (3:7)

where (Y
(m)
t, y , Y (m)

t, y ), m ¼ 1, . . . , M , are independent realizations of the process (Yt, y, Yt, y)

that approximates the process (Yt, y, Yt, y) from (3.6).

Similarly to (2.4)–(2.5), the representation (3.5)–(3.6) may be extended to

v(T , y) ¼ E [g(Yt, y(T ))Yt, y(T ) þ Y t, y(T )], (3:8)

where Yt, y(s), Yt, y(s), Y t, y(s), s > t, solve the following system of SDEs:

dY ¼ (Æ(s, Y ) � ~�� (s, Y ) ~hh(s, Y )) ds þ ~�� (s, Y ) d ~WW (s), Y (t) ¼ y,

dY ¼ c(s, Y )Y ds þ ~hhT(s, Y )Y d ~WW (s), Y(t) ¼ 1,

dY ¼ ~FF T(s, Y )Y d ~WW (s), Y(t) ¼ 0:

(3:9)

In (3.9), Y and Y are scalars and ~hh(t, x) 2 Rm and ~FF(t, x) 2 Rm are arbitrary vector

functions which satisfy some regularity conditions.

Remark 3.1. If system (1.1) is autonomous, then ~bbij, ~aai, Æi, ~�� , and c depend on y only,
~bbij(y) ¼ bij(y), ~aai(y) ¼ ai(y), and so ~�� (y) can be taken equal to � (y).

Remark 3.2. By constructing the reverse system of reverse system (3.6), we obtain the

original system (1.1) accompanied by a scalar equation with coefficient �c. By then taking

the reverse of this system we obtain (3.6) again.

Remark 3.3. If the original stochastic system (1.1) is linear, then the system (3.6) is linear as

well and c depends on t only.

Remark 3.4. variance reduction methods discussed in Section 2 may be applied to the reverse

system as well. In particular, for the reverse system a theorem analogue to Theorem 2.1

applies.

4. Transition density estimation based on forward–reverse
representations

In this section we present estimators for the target probability density p(t, x, T , y), which

utilize both the forward and the reverse diffusion system. More specifically, we give two

different Monte Carlo estimators for p(t, x, T , y) based on forward–reverse representations:

a forward–reverse kernel estimator and a forward–reverse projection estimator. A detailed

analysis of the performance of these estimators is postponed to Sections 6 and 7.

We start with a heuristic discussion. Let t� be an internal point of the interval [t, T ]. By

the Kolmogorov–Chapman equation for the transition density we have
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p(t, x, T , y) ¼
ð

p(t, x, t�, x9) p(t�, x9, T , y) dx9: (4:1)

By applying Theorem 3.1 with g(x9) ¼ p(t, x, t�, x9), it follows that this equation has a

probabilistic representation

p(t, x, T , y) ¼ E p(t, x, t�, Yt� , y(T ))Yt� , y(T ): (4:2)

Since in general the density function x9 ! p(t, x, t�, x9) is also unknown, we cannot apply

the Monte Carlo estimator v̂v in (3.7) to representation (4.2) directly. However, the key idea is

now to estimate this density function from a sample of independent realizations of X on the

interval [t, t�] by standard methods of nonparametric statistics and then to replace the

unknown density function in the right-hand side of (4.2) by its estimator, say x9 !
p̂p(t, x, t�, x9). This idea suggests the following procedure. Generate by numerical integration

of the forward system (1.1) and the reverse system (3.6) (or (3.9)) independent samples

X
(n)
t,x (t�), n ¼ 1, . . . , N , and (Y

(m)

t� , y
(T ), Y (m)

t�, y
(T )), m ¼ 1, . . . , M , respectively (in general,

different step sizes may be used for X and Y ). Let �̂pp�pp(t, x, t�, x9) be, for instance, the kernel

estimator of p(t, x, t�, x9) from (1.7), that is,

�̂pp�pp(t, x, t�, x9) ¼ 1

N�d

XN

n¼1

K
X

(n)
t,x (t�) � x9

�

 !
:

Thus, replacing p by this kernel estimator in the right-hand side of reverse representation

(4.2) yields a representation which may be estimated by

�̂pp�pp(t, x, T , y) ¼ 1

M

1

N�d

XM

m¼1

XN

n¼1

K
X

(n)
t,x (t�) � Y

(m)

t� , y
(T )

�

 !
Y (m)

t� , y
(T )

" #
: (4:3)

The estimator (4.3) will be called a forward–reverse kernel estimator.

We will show that the above heuristic idea does work and leads to estimators which have

superior properties in comparison with the usual density estimators based on pure forward

or pure reverse representations. Of course, the kernel estimation of p(t, x, t�, x9) in the first

step will as usual be crude for a particular x9. But, due to a good overall property of kernel

estimators – the fact that any kernel estimator is a density – the impact of these pointwise

errors will be reduced in the second step, the estimation of (4.2). In fact, by the Chapman–

Kolmogorov equation (4.1) the estimation of the density at one point is done via the

estimation of a functional of the form (4.2). It can be seen that the latter estimation

problem has smaller degree of ill-posedness, and therefore the accuracy achievable for a

given amount of computational effort will be improved.

Now we proceed with a formal description which essentially utilizes the next general

result naturally extending Theorem 3.1.
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Theorem 4.1. For a bivariate function f we have

J ( f ) :¼
ðð

p(t, x, t�, x9) p(t�, y9, T , y) f (x9, y9) dx9 dy9

¼ E [ f (X t,x(t�), Yt�, y(T ))Yt� , y(T )], (4:4)

where X t,x(s) obeys the forward equation (1.1) and (Yt� , y(s), Yt�, y(s)), s > t�, is the solution

of the reverse system (3.6).

Proof. Conditioning on X t,x(t�) and applying Theorem 3.1 with g(�) ¼ f (x9, �) for every x9

yields

E f (X t,x(t�), Yt�, y(T ))Yt�, y(T )
� �

¼ E E f (X t,x(t�), Yt�, y(T ))Yt�, y(T )jX t,x(t�)
� �

¼
ð

p(t, x, t�, x9)

ð
f (x9, y9) p(t�, y9, T , y) dy9

� �
dx9:

h

Let X
(n)
t,x (t�), n ¼ 1, . . . , N , be a sample of independent realizations of an approxima-

tion X of X , obtained by numerical integration of (1.1) on the interval [t, t�]. Similarly, let

(Y
(m)

t�, y
(T )Y (m)

t� , y
(T )), m ¼ 1, . . . , M , be independent realizations of a numerical solution of

(3.6) on the interval [t�, T ]. Then the representation (4.4) leads to the following Monte

Carlo estimator for J ( f ):

�̂JJ�JJ ¼ 1

MN

XN

n¼1

XM

m¼1

f X
(n)
t,x (t�), Y

(m)

t� , y
(T )

� �
Y (m)

t� , y
(T ): (4:5)

Formally, J ( f ) ! p(t, x, T , y) as f ! �diag (in the distribution sense), where �diag(x9, y9)

:¼ �0(x9� y9) and �0 is the Dirac function concentrated at zero. So, in the attempt to

estimate the density p(t, x, T , y), two families of functions f naturally arise. Let us take

functions f of the form

f (x9, y9) ¼: f K,�(x9, y9) ¼ ��d K
x9� y9

�

� �
,

where ��d K(u=�) converge to �0(u) (in the distribution sense) as � # 0. Then the

corresponding expression for ĴJ coincides with the forward–reverse kernel estimator p̂p in

(4.3). As an alternative, consider functions f of the form

f (x9, y9) ¼: fj,L(x9, y9) ¼
XL

‘¼1

j‘(x9)j‘(y9),

where fj‘, ‘ > 1g is a total orthonormal system in the function space L2(Rd) and L is a

natural number. It is known that fj,L ! �diag (in the distribution sense) as L ! 1. This

leads to the forward–reverse projection estimator,
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�̂pp�pp pr ¼
1

MN

XN

n¼1

XM

m¼1

XL

‘¼1

j‘ X
(n)
t,x (t�)

� �
j‘ Y

(m)

t�, y
(T )

� �
Y (m)

t�, y
(T ) ¼

XL

‘¼1

�̂ÆÆ�ÆÆ‘ �̂ªª�ªª‘, (4:6)

with

�̂ÆÆ�ÆÆ‘ ¼
1

N

XN

n¼1

j‘ X
(n)
t,x (t�)

� �
, �̂ªª�ªª‘ ¼

1

M

XM

m¼1

j‘ Y
(m)

t� , y
(T )

� �
Y (m)

t� , y
(T ):

The general properties of the forward–reverse kernel estimator are studied in Section 6

and the forward–reverse projection estimator is studied in Section 7. As mentioned

previously, by properly selecting a numerical integration scheme and step size h,

approximate solutions of systems of SDEs can be simulated sufficiently close to exact

solutions. Therefore, in Sections 6 and 7 the analysis is carried out with respect to exact

solutions X t,x(s) and (Yt� , y(s), Yt�, y(s)). For the impact of their approximations X t,x(s) and

(Yt�, y(s), Yt�, y(s)) obtained by the Euler scheme on the estimation accuracy, we refer to

Section 8.

Remark 4.1. If we take t� ¼ T in (4.3) we obtain the usual forward kernel estimator (1.6)

again. Indeed, for t� ¼ T we have Y
(m)
T , y(T ) ¼ y and Y (m)

T , y(T ) ¼ 1 for any m. Similarly, taking

t� ¼ t in (4.3) leads to the pure reverse estimator,

�̂pp�pp(t, x, T , y) :¼ 1

M�d

XM

m¼1

K
x � Y

(m)
t, y (T )

�

 !
Y (m)

t, y (T ): (4:7)

It should be noted that the pure forward estimator gives for fixed x and one simulation

sample of X an estimation of the density p(t, x, T , y) for all y. On the other hand, the pure

reverse estimator gives for fixed y and one simulation of the reverse system a density

estimation for all x. In contrast, the proposed forward–reverse estimators require for each

pair (x, y) a simulation of both the forward and the reverse process. However, as we will see,

these estimators have superior convergence properties.

Remark 4.2. In general, it is possible to apply variance reduction methods to the estimator ĴJ

in (4.5), based on the extended representations (2.4)–(2.5) and (3.8)–(3.9).

5. Explicit analysis of the forward–reverse kernel estimator in
a one-dimensional example

We consider an example of a one-dimensional diffusion for which all characteristics of the

forward–reverse kernel estimator introduced in Section 4 can be derived analytically. For

constant a, b, the one-dimensional diffusion is given by the SDE

dX ¼ aX dt þ b dW (t), X (0) ¼ x, (5:1)

which, for a , 0, is known as the Ornstein–Uhlenbeck process. By (3.6), the reverse system

belonging to (5.1) is given by
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dY ¼ �aY ds þ b d ~WW (s), Y (t) ¼ y, s . t, (5:2)

dY ¼ �aY ds, Y(t) ¼ 1: (5:3)

Both systems (5.1) and (5.2) can be solved explicitly. Their solutions are given by

X (t) ¼ eat x þ b

ð t

0

e�au dW (u)

� �

and

Y (s) ¼ e�a(s� t) y þ b

ð s

t

ea(u� t) d ~WW (u)

� �
,

Y(s) ¼ e�a(s� t),

respectively. It follows that

E X (t) ¼ eatx, var X (t) ¼ b2e2at

ð t

0

e�2au du ¼ b2 e2at � 1

2a
:¼ � 2(t)

and, since the probability density of a Gaussian process is determined by its expectation and

variance process, we have X (t) � N (eatx, � 2(t)). The transition density of X is thus given

by

pX (t, x, s, z) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 2(s � t)

p exp � (ea(s� t)x � z)2

2� 2(s � t)

� �
: (5:4)

Similarly, for the reverse process Y we have Y (s) � N (e�a(s� t) y, e�2a(s� t)� 2(s � t)), and so

pY (t, y, s, z) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�e�2a(s� t)� 2(s � t)

p exp � (e�a(s� t) y � z)2

2e�2a(s� t)� 2(s � t)

� �

is the transition density of Y .

We now consider the forward–reverse estimator (4.3) for the transition density (5.4),

where we take t ¼ 0 and 0 , t� , T . For the sake of simplicity, we do not deal with

variance reduction, that is to say, we take h � 0 and F � 0. It follows that

pX (0, x, T , y) � �N ,M :¼ e�a(T� t�)

MN�

XM

m¼1

XN

n¼1

K nm, (5:5)
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where

K nm :¼ K ��1eat� x þ b

ð t�

0

e�au dW (n)(u)

 ! 

� ��1e�a(T� t�) y þ b

ðT

t�
ea(u� t�) d ~WW (m)(u)

� ��

¼ K(��1(eat� x � e�a(T� t�) y þ � (t�)U (n) � e�a(T� t�)� (T � t�)V (m))), (5:6)

with U (n) and V (m) being independent standard normally random variables. Note that, in

general, � in (5.5) and (5.6) may be chosen dependent on both N and M , so � ¼ �N ,M in

fact.

By choosing the Gaussian kernel

K(z) ¼ 1ffiffiffiffiffiffi
2�

p exp (�z2=2), (5:7)

it is possible to derive explicit expressions for the first and second moment of �N ,M in (5.5).

In particular, for the expected value we have

E �N ,M ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�(�2e2a(T� t�) þ � 2(T ))

p exp � (eaT x � y)2

2(�2e2a(T� t�) þ � 2(T ))

� �
(5:8)

and for the variance it follows that

var (�N ,M ) ¼ �N � M þ 1

2�MN (B þ � 2(T ))
exp � A

B þ � 2(T )

� �

þ M � 1

2�MN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ � 2(T � t�)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ 2� 2(T ) � � 2(T � t�)

p exp � A

B þ 2� 2(T ) � � 2(T � t�)

� �

þ N � 1

2�MN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ � 2(T ) � � 2(T � t�)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ � 2(T ) þ � 2(T � t�)

p

3 exp � A

B þ � 2(T ) þ � 2(T � t�)

� �
þ e�a(T� t�)

2�MN�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ 2� 2(T )

p exp � A

B þ 2� 2(T )

� �
: (5:9)

with the abbreviations A :¼ (eaT x � y)2, B :¼ �2e2a(T� t�). Since in Sections 6 the forward–

reverse kernel estimator will be analysed quite generally, here we confine ourselves to a brief

sketch of the derivation of (5.8) and (5.9). It is convenient to use the following standard

lemma, which we state without proof.
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Lemma 5.1. Let U be a standard normal random variable and let the kernel K be given by

(5.7). Then

E K( p þ qU ) ¼ exp(� p2=(2 þ 2q2))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�(1 þ q2)

p :

In (5.5) the K nm are identically distributed and so (5.8) follows straightforwardly by

application of Lemma 5.1. The variance expression can be derived as follows. We consider

the second moment

E �2
N ,M ¼ e�2a(T� t�)

M2 N 2�2

XM

m¼1

XN

n¼1

XM

m9¼1

XN

n9¼1

E K nm K n9m9 (5:10)

and split the sum into four parts: n 6¼ n9 and m 6¼ m9; n ¼ n9 and m 6¼ m9; n 6¼ n9 and

m ¼ m9; n ¼ n9 and m ¼ m9. Then, to each part we apply Lemma 5.1 with appropriate

substitutes for p and q. After collecting the results, (5.9) follows by var (�N ,M ) ¼
E �2

N ,M � (E �N ,M )2.

Clearly, as in Remark 4.1, substituting t� ¼ T and t� ¼ 0 in (5.5) yields the pure

forward estimator and pure reverse estimator, respectively. In this example the forward

estimator is given by

�N :¼ 1

N�

XN

n¼1

K n :¼ 1

N�

XN

n¼1

K((eaT x � y þ � (T )U (n))��1)

and a similar expression holds for the reverse estimator. The bias and variance of these

estimators may be derived analogously, but also follow from (5.8) and (5.9) by setting t� ¼ T

or t� ¼ 0.

We now compare the bias and variance of the forward–reverse estimator with the pure

forward estimator. By (5.8) we have for the forward–reverse estimator, that is, (5.5) with

0 , t� , T ,

E �N ,M ¼ exp(�(eaT x � y)2=2� 2(T ))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 2(T )

p (1 þ c0�
2 þO(�3)) ¼ pX (0, x, T , y)(1 þO(�2)),

(5:11)

where c0 is a constant not equal to zero. Hence, for a kernel given by (5.7) the bias is of

order O(�2). Obviously, the same is true for the forward estimator.

For the variance of the forward estimator we have

var (�N ) ¼ 1

2�N

exp �(eaT x � y)2=(�2 þ 2� 2(T ))ð Þ
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2� 2(T )

p � 1

2�N

exp �(eaT x � y)2=(�2 þ � 2(T ))ð Þ
�2 þ � 2(T )

,

(5:12)

which follows by substituting t� ¼ T in (5.9) so that M drops out. Comparison of (5.9) with

(5.12) then leads to the following interesting conclusion.

Conclusions 5.1. We consider the case M ¼ N and denote the forward–reverse estimator for
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pX (0, x, T , y) by �N as well. The width � will thus be chosen in relation to N , hence

� ¼ �N . We observe that

E(�N � pX (0, x, T , y))2 ¼ var (�N ) þ (E �N � pX (0, x, T , y))2, (5:13)

where �N :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(�N � pX (0, x, T , y))2

p
is usually referred to as the accuracy of the

estimation. From (5.11), (5.12) and (5.13) it is clear that for the forward estimator �N # 0

when N ! 1, if and only if �N ! 0 and N�N ! 1. By (5.11) and (5.12) we have for the

forward estimator

�2
N ¼ c1

N�N

þ c2�
4
N

� �
(1 þ o(1)), N�N ! 1 and �N # 0, (5:14)

for some positive constants c1, c2. It thus follows that the best achievable accuracy rate for

the forward estimator is �N � N�2=5, which is attained by taking �N � N�1=5.

We next consider the forward–reverse estimator which is obtained for 0 , t� , T. From

(5.11), (5.9), and (5.13) it follows by similar arguments that

�2
N ¼ d1

N
þ d2

N2�N

þ d3�
4
N

� �
(1 þ o(1)), N 2�N ! 1 and �N # 0, (5:15)

for some positive constants d1, d2 and d3. So from (5.15) we conclude that by using the

forward–reverse estimator the accuracy rate is improved to �N � N�1=2 and this rate may be

achieved by �N � N� p for any p 2 1
4
, 1]
�

.

Remark 5.1. It is easy to check that for the reverse estimator we have the same accuracy

(5.14) and so the same conclusions apply.

6. Accuracy analysis of the forward–reverse kernel estimator
in general

In this section we study the properties of the kernel estimator (4.3) for the transition density

p ¼ p(t, x, T , y) in general. However, here and in Section 7 we will disregard the

discretization bias caused by numerical integration of SDEs and will only concentrate on

the loss due to the particular structure of the new estimators. We thus assume in this section

and the next that all random variables involved are due to exact solutions of the respective

SDEs.

Let r(u) be the density of the random variable X t,x(t�), that is, r(u) ¼ p(t, x, t�, u).

Similarly, let q(u) be the density of Yt�, y(T ) and further denote by �(u) the conditional

mean of Yt� , y(T ) given Yt� , y(T ) ¼ u. By the following lemma we may reformulate the

representation for p in (4.2) and J ( f ) in (4.4).
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Lemma 6.1.

p ¼
ð

r(u)�(u)q(u) du, (6:1)

J ( f ) ¼
ðð

f (u, v)r(u)q(v)�(v) du dv: (6:2)

Proof. Equality (6.1) follows from (4.2) by

p ¼ E r Yt� , y(T )
� �

Yt� , y(T ) ¼ E r Yt�, y(T )
� �

E Yt�, y(T )jYt� , y(T )
� �� 	

¼ E r Yt� , y(T )
� �

�(Yt�, y(T )) ¼
ð

r(u)�(u)q(u) du, (6:3)

and (6.2) follows from (4.4) in a similar way. h

For a kernel function K(z) in Rd and a bandwidth �, we put f (u, v) ¼
f K,�(u, v) :¼ ��d K((u � v)=�) and thus have, by Lemma 6.1,

J ( f K,�) ¼
ðð

��d K
u � v

�

� �
r(u)q(v)�(v) du dv,

which formally converges to the target density p in (6.1) as � # 0. Following Section 4, this

leads to the Monte Carlo kernel estimator

p̂p ¼ 1

�d MN

XN

n¼1

XM

m¼1

Ym K
X n � Ym

�

� �
¼ 1

MN

XN

n¼1

XM

m¼1

Z nm (6:4)

with

Z nm :¼ ��dYm K
X n � Ym

�

� �
,

where X n :¼ X
(n)
t,x (t�) 2 Rd , n ¼ 1, . . . , N , may be regarded as an independent and

identically distributed (i.i.d.) sample from the distribution with density r, the sequence

Ym ¼ Y
(m)

t�, y
(T ) 2 Rd , m ¼ 1, . . . , M , as an i.i.d. sample from the distribution with density q,

and the weights Ym ¼ Y(m)

t� , y
(T ), m ¼ 1, . . . , M , may be seen as independent samples from a

distribution conditional on Ym, with conditional mean �(y) given Ym ¼ u. We derive some

properties of this estimator below.

Lemma 6.2. We have

E p̂p ¼ p� :¼
ðð

r(u þ �v)q(u)�(u)K(v) du dv ¼
ð

r�(u)º(u) du,

with

º(u) :¼ q(u)�(u)
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and

r�(u) :¼ ��d

ð
r(v)K ��1(v� u)

� �
dv ¼

ð
r(u þ �v)K(v) dv:

Moreover, if the kernel K satisfies
Ð

K(u) du ¼ 1, K(u) > 0, K(u) ¼ K(�u) for all u 2 Rd,

and K(u) ¼ 0 for juj . 1, then the bias j p � E p̂pj satisfies

jp � E p̂pj ¼ jp � p�j < CKkr 0k�2 (6:5)

with CK ¼ 1
2

Ð
jvj2 K(v) dv �

Ð
º(u) du and kr 0k ¼ supv kr 0(v)k, where kr 0(v)k is the

Euclidean norm of the matrix r 0(v) ¼ f@2 r=@vi@v jg.

Proof. Since all Z nm are i.i.d., by (4.4) we have E p̂p ¼ J ( f K,�) ¼ E Z nm for every

n ¼ 1, . . . , N and m ¼ 1, . . . , M . Hence, by Lemma 6.1,

E Z nm ¼ ��d

ðð
r(u)q(v)�(v)K ��1(u � v)

� �
du dv

¼
ðð

r(u þ �v)q(u)�(u)K(v) du dv ¼ p�:

For the second assertion it is sufficient to note that the properties
Ð

K(v) dv ¼ 1,Ð
K(v) v dv ¼ 0, and K(v) ¼ 0 for jvj . 1 imply

r�(u) � r(u) ¼
ð

r(u þ �v)K(v) dv� r(u) ¼
ð

r(u þ �v) � r(u) � �vT r9(u)
� 	

K(v) dv

¼
ð

1

2
�2vT r 0(u þ Ł(v)�v)v K(v) dv

<
1

2
�2kr 0k

ð
jvj2 K(v) dv,

where jŁ(v)j < 1, and so

jp� � pj <
ð
jr�(u) � r(u)jº(u) du < CK�

2kr 0k
ð
º(u) du:

h

Remark 6.1. The order of the bias jp�� pj can be improved by using higher-order kernels

K. We say that K is of order � if
Ð

u
j1
1 . . . u

jd

d K(u) du ¼ 0 for all non-negative integers

j1, . . . , jd satisfying 0 , j1 þ . . . þ jd < �. Similarly to the proof of Lemma 6.2, one can

show that the application of a kernel K of order � satisfying
Ð

K(u) du ¼ 1, K(u) ¼ 0 for

juj > 1 leads to a bias with j p� � pj < C��þ1, where C is a constant depending on r, q and K.

Concerning the variance var p̂p ¼ E( p̂p � E p̂p)2 of the estimator (6.4) we obtain the next

result.
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Lemma 6.3. It holds

var p̂p ¼ 1

NM
��d B� þ

M � 1

NM

ð
r(u)º2

�(u) du þ N � 1

NM

ð
r2
�(u)�2(u)q(u) du

� N þ M � 1

NM
p2
�,

(6:6)

where

B� ¼
ð

r�,2(u)�2(u)q(u) du

with

º�(u) ¼ ��d

ð
º(v)K ��1(v� u)

� �
dv ¼

ð
º(u þ �v)K(v) dv,

r�,2(u) ¼ ��d

ð
r(v)K2 ��1(v� u)

� �
dv ¼

ð
r(u þ �v)K2(v) dv,

�2(v) ¼ E (Y2
1jY1 ¼ v):

Proof. Since Z nm and Z n9m9 are independent if both n 6¼ n9 and m 6¼ m9, it follows that

M2 N 2 var p̂p ¼ E
XN

n¼1

XM

m¼1

(Z nm � p�)

 !2

(6:7)

¼
XN

n¼1

XM

m¼1

E (Z nm � p�)2 þ
XN

n¼1

XM

m¼1

X
m9 6¼m

(E Z nm Z nm9 � p2
�)

þ
XN

n¼1

X
n9 6¼n

XM

m¼1

(E Z nm Z n9m � p2
�):

Note that for m 6¼ m9 we have

E Z nm Z nm9 ¼ ��2d

ððð
K ��1(u � v)
� �

K ��1(u � v9)
� �

r(u)º(v)º(v9) du dv dv9

¼ ��d

ðð
K ��1(u � v)
� �

r(u)º�(u)º(v) du dv

¼
ð

r(u)º2
�(u) du

and, similarly, for n 6¼ n9 it follows that

E Z nm Z n9m ¼
ð

r2
�(u)�2(u)q(u) du:
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Further,

E Z2
nm ¼ ��2dEY2

m K2 ��1 X n � Ymð Þ
� �

¼ ��2dE K2 ��1 X n � Ymð Þ
� �

E Y2
mjYm

� �� �
¼ ��2d

ðð
K2 ��1(u � v)
� �

r(u)q(v)�2(v) du dv

¼ ��d

ð
�2(v)q(v)r�,2(v) dv

and so we obtain

var p̂p ¼ ��d B� � p2
�

NM
þ M � 1

NM

ð
r(u)º2

�(u) du � p2
�

� �
þ N � 1

NM

ð
r2
�(u)�2(u) q(u) du � p2

�

� �
,

from which the assertion follows. h

Let us define

B ¼
ð

K2(u) du �
ð

r(u)�2(u) q(u) du: (6:8)

By the Taylor expansion

r(u þ �v) ¼ r(u) þ �vT r9(u) þ 1

2
�2vT r 0(u þ Ł(v)�v)v,

one can show in a way similar to the proof of Lemma 6.1 that

jB� � Bj ¼ O(�2), � # 0:

In the same way, we obtain




ð

r(u)º2
�(u) du �

ð
r(u)º2(u) du





 ¼ O(�2), � # 0,






ð

r2
�(u)�2(u) q(u) du �

ð
r2(u)�2(u) q(u) du





 ¼ O(�2), � # 0:

Further, introduce the constant D given by

D :¼
ð

r(u)º2(u) du þ
ð

r2(u)�2(u) q(u) du � 2 p2: (6:9)

Then, from Lemmas 6.1 and 6.3 the next lemma follows.

Lemma 6.4. For N ¼ M we have



var p̂p � D

N
� ��d B

N2





 < C
��dþ2

N2
þ �2

N
þ 1

N 2

� �
: (6:10)
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In particular, if � ¼: �N depends on N such that ��d
N N�1 ¼ o(1) and �N ¼ o(1) as N ! 1,

then 



var p̂p � D

N





 ¼ o(1)

N
, N ! 1:

Now, by combining Lemmas 6.2 and 6.4, we have the following theorem.

Theorem 6.1. Let N ¼ M and � ¼ �N depend on N .

(a) If d , 4 and �N is such that

1

N�d
N

¼ o(1) and �4
N N ¼ o(1), N ! 1,

then the estimate p̂p (see (4.3) or (6.4)) of the transition density p ¼ p(t, x, T , y)

satisfies

E ( p̂p � p)2 ¼ ( p� � p)2 þ var p̂p ¼ D

N
þ o(1)

N
, N ! 1: (6:11)

Hence, a root-N accuracy rate is achieved (we recall that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ( p̂p � p)2

p
is the

accuracy of the estimator). In this case the variance is of order N�1 and the squared

bias is o(N�1).

(b) If d ¼ 4 and �N ¼ CN�1=4, where C is a positive constant, then the accuracy rate is

again N�1=2 but now both the squared bias and the variance are of order N�1.

(c) If d . 4 and �N ¼ CN�2=(4þd), then the accuracy rate is N�4=(4þd) and both the

squared bias and the variance are of the same order N�8=(4þd).

Proof. Clearly, (6.5) and (6.10) imply (6.11). The conditions ��d
N N�1 ¼ o(1) and N�4

N

¼ o(1) can be fulfilled simultaneously only when d , 4. In this case one may take,

for instance, �N ¼ N�1=d log1=d N yielding ��d
N N�1 ¼ 1= log N ¼ o(1) and N�4

N ¼
N1�4=dlog4=d N ¼ o(1). By (6.5) the squared bias is then of order O(�4

N ) ¼
O(N�4=d log4=d N ) ¼ o(N�1) for d , 4. The statements for d ¼ 4 and d . 4 follow in a

similar way. h

Remark 6.2. We conclude that, by combining forward and reverse diffusion, it is possible to

achieve an estimation accuracy of rate N�1=2 for d < 4. Moreover, for d . 4 an accuracy

rate of root-N may also be achieved by applying a higher-order kernel K.

In Section 9 we will see that with the proposed choice of the bandwidth

�N ¼ N�1=d log1=d N for d < 3 and �N ¼ N�2=(4þd) for d > 4, the kernel estimator p̂p

can be computed at a cost of order N log N operations.

Remark 6.3. For the pure forward estimator (1.6) and pure reverse estimator (1.6) it is not

difficult to show that
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�2
N :¼ E ( p̂p � p)2 ¼ c1

N�d
N

þ c2�
4
N

 !
(1 þ o(1)), �N # 0 and N�d

N ! 1, (6:12)

where c1 and c2 are positive constants. So the best achievable accuracy rate for the forward

estimator is �N ¼ O(N�2=(4þd)), which is obtained by a bandwidth choice �N ¼ N�1=(4þd).

Clearly, this rate is lower than the accuracy rate of the forward–reverse estimator which is

basically root-N.

Remark 6.4. In applications it is important to choose the intermediate time t� properly. In

this respect we note that D in (6.9) only depends on the choice of t� and, in particular, it is

not difficult to show that D ! 1 as t� # t or t� " T. So, by Lemma 6.4, in the case N ¼ M

and d , 4 we should select a t� for which this constant is not too big. In practice, however, a

suitable t� is best found by just comparing for different choices the performance of the

estimator for relatively small sample sizes. For d > 4 and N ¼ M the constant B in (6.8) is

also involved but similar conclusions can be drawn.

7. The forward–reverse projection estimator

In this section we discuss statistical properties of the projection estimator p̂ppr from (4.6) for

the transition density p(t, x, T , y). First we sketch the main idea.

Let fj‘(x), ‘ ¼ 1, 2, . . .g be a total orthonormal system in the Hilbert space L2(Rd). For

example, in the case d ¼ 1 one could take

j lþ1(u) ¼ 1ffiffiffiffiffiffiffiffi
2 l l!

p ffiffiffi
�4

p H l(u)e�u2=2, l ¼ 0, 1, . . . ,

where H l(u) are the Hermite polynomials. In the d-dimensional case it is possible to

construct a similar basis by using Hermite functions as well. Consider formally for r(u) ¼
p(t, x, t�, u) (see Section 6) and h(u) :¼ p(t�, u, T , y) the Fourier expansions

r(u) ¼
X1
‘¼1

Æ‘j‘(u), h(u) ¼
X1
‘¼1

ª‘j‘(u),

with

Æ‘ :¼
ð

r(u)j‘(u) du, ª‘ :¼
ð

h(u)j‘(u) du:

By (2.1), (3.1), and (3.5) it follows that

Æ‘ ¼ Ej‘(X t,x(t�)), (7:1)

ª‘ ¼ Ej‘(Yt�, y(T ))Yt�, y(T ), (7:2)

respectively. Since by the Chapman–Kolmogorov equation (4.1) the transition density p ¼
p(t, x, T , y) may be written as a scalar product p ¼

Ð
r(u)h(u) du, we thus formally obtain
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p ¼
X1
‘¼1

Æ‘ª‘: (7:3)

Therefore, it is natural to consider the estimator

p̂ppr ¼
XL

‘¼1

Æ̂Æ‘ª̂ª‘, (7:4)

where L is a natural number and

Æ̂Æ‘ :¼
1

N

XN

n¼1

j‘(X n), ª̂ª‘ :¼
1

M

XM

m¼1

j‘(Ym)Ym (7:5)

are estimators for the Fourier coefficients Æ‘, ª‘, respectively. For the definition of X n, Ym

and Ym, see Section 6. Note that (7.4)–(7.5) coincide with the projection estimator

introduced in (4.6).

We now study the accuracy of the projection estimator. In the subsequent analysis we

assume that the originating diffusion coefficients a and � in (1.1) are sufficiently good in

the analytical sense such that, in particular, the functions y9 ! p(t, x, t�, y9) and

y9 ! p(t�, y9, T , y) are square integrable. Hence, we assume that the Fourier expansions

used in this section are valid in L2(Rd). The notation introduced in Section 6 is retained

below. We have the following lemma.

Lemma 7.1. For every ‘ > 1,

E Æ̂Æ‘ ¼ Æ‘ ¼
ð

r(u)j‘(u) du,

var Æ̂Æ‘ ¼ N�1 varj‘(X1) ¼ N�1

ð
j2
‘ (u)r(u) du � Æ2

‘

� �
¼: N�1Æ‘,2:

Similarly,

E ª̂ª‘ ¼ ª‘ ¼
ð
j‘(u)�(u)q(u) du,

var ª̂ª‘ ¼ M�1 varY1j‘(Y1) ¼ M�1

ð
�2(u)j2

‘ (u)q(u) du � ª2
‘

� �
¼: M�1ª‘,2,

where �2(u) :¼ E (Y2
1jY1 ¼ u).

Proof. The first part is obvious and the second part follows by a conditioning argument

similar to (6.3) in the proof of Lemma 6.1. h
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Since the Æ̂Æ‘ and the ª̂ª‘ are independent, it follows by Lemma 7.1 that

E p̂ppr ¼ E
XL

‘¼1

Æ̂Æ‘ª̂ª‘ ¼
XL

‘¼1

Æ‘ª‘:

So, by (7.3) and the Cauchy–Schwarz inequality, we obtain the next lemma for the bias

E p̂ppr � p of the estimator p̂ppr.

Lemma 7.2.

E p̂ppr � pð Þ2¼
X1

‘¼Lþ1

Æ‘ª‘

 !2

<
X1

‘¼Lþ1

Æ2
‘

X1
‘¼Lþ1

ª2
‘ :

By the following result we may estimate the variance of p̂ppr. For convenience, we restrict

ourselves to the case N ¼ M .

Lemma 7.3. Let (L þ 1)2 < N and the Fourier coefficients Æ‘ and ª‘ satisfy the conditions

X1
‘¼1

jÆ‘j < C1,Æ,
X1
‘¼1

jª‘j < C1,ª, (7:6)

max
‘

Æ‘,2 < C2,Æ, max
‘

ª‘,2 < C2,ª: (7:7)

Then we have

N var p̂p pr < C,

with C depending on C1,Æ, C2,Æ and C1,ª, C2,ª only.

Proof. Let us write

XL

‘¼1

Æ̂Æ‘ª̂ª‘ �
XL

‘¼1

Æ‘ª‘ ¼
XL

‘¼1

(Æ̂Æ‘ � Æ‘)(ª̂ª‘ � ª‘) þ
XL

‘¼1

Æ‘(ª̂ª‘ � ª‘) þ
XL

‘¼1

(Æ̂Æ‘ � Æ‘)ª‘

¼: I1 þ I2 þ I3:

The Cauchy–Schwarz inequality implies that

E (I2)2 ¼ E
XL

‘¼1

Æ‘(ª̂ª‘ � ª‘)

 !2

< E
XL

‘¼1

jÆ‘j
XL

‘¼1

jÆ‘j(ª̂ª‘ � ª‘)
2

 !

< C1,Æ

XL

‘¼1

jÆ‘jE (ª̂ª‘ � ª‘)
2 < C2

1,ÆC2,ªN�1,
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and similarly

E (I3)2 ¼ E
XL

‘¼1

ª‘(Æ̂Æ‘ � Æ‘)

 !2

< C2
1,ªC2,ÆN�1:

The Cauchy–Schwarz inequality and independence of the Æ̂Æ‘ and the ª̂ª‘ imply that

E (I1)2 ¼ E
XL

‘¼1

(Æ̂Æ‘ � Æ‘)(ª̂ª‘ � ª‘)

 !2

< E
XL

‘¼1

(Æ̂Æ‘ � Æ‘)
2E
XL

‘¼1

(ª̂ª‘ � ª‘)
2

< C2,ÆC2,ª(L þ 1)2 N�2 < C2,ÆC2,ªN�1:

Hence,

var p̂ppr ¼ E (I1 þ I2 þ I3)2 <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E(I1)2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E(I2)2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E(I3)2

p� �2

<
C

N

with C :¼ 3(C2
1,ÆC2,ª þ C2

1,ªC2,Æ þ C2,ÆC2,ª). h

Application of Lemmas 7.2 and 7.3 yields the following theorem.

Theorem 7.1. Let the Fourier coefficients Æ‘ and ª‘ satisfy the condition

X1
‘¼1

Æ2
‘ ‘

2�=d < C2
Æ,

X1
‘¼1

ª2
‘ ‘

2�=d < C2
ª (7:8)

with � . d=2, and let condition (7.7) hold. Let L ¼ LN satisfy L2
N=N ¼ o(1) and N L

�4�=d
N

¼ o(1), as N ! 1. Then, for the accuracy of the estimator p̂ppr with N ¼ M , we have

E p̂ppr � pð Þ2
< CN�1:

Proof. Clearly,

X1
‘¼Lþ1

Æ2
‘ < (L þ 1)�2�=d

X1
‘¼Lþ1

Æ2
‘ ‘

2�=d < C2
ÆL�2�=d :

Similarly,
P1

‘¼Lþ1ª
2
‘ < C2

ªL�2�=d and so

N
X1

‘¼Lþ1

Æ‘ª‘

 !2

< C2
ÆC2

ªN L�4�=d ¼ o(1):

Next,

XL

‘¼1

jÆ‘j
 !2

<
XL

‘¼1

Æ2
‘ ‘

2�=d
XL

‘¼1

‘�2�=d < C2
Æ

XL

‘¼1

‘�2�=d < C2
ÆC�

with C� ¼
PL

‘¼1‘
�2�=d , 1. Similarly
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XL

‘¼1

jª‘j
 !2

< C2
ªC�,

and thus condition (7.6) holds with C1,Æ ¼ CÆC
1=2

� and C1,ª ¼ CªC
1=2

� . Now the assertion

follows from Lemma 7.3. h

Remark 7.1. In Theorem 7.1, � plays the role of a smoothness parameter. Indeed, for a

functional basis such as the Hermite bases, condition (7.8) is fulfilled if the functions

x9 ! p(t, x, t�, x9) and x9 ! p(t�, x9, T , y) have square-integrable derivatives up to order �.

For � ¼ 2, the conditions L2
N=N ¼ o(1) and N L

�4�=d
N ¼ o(1) can be fulfilled simultaneously

only if d , 4, so we then have a similar situation to that for the kernel estimator in Section

6. In general, if (7.8) holds for � . d=2, one may take LN ¼ (N log N )d=(4�) in Theorem 7.1,

thus yielding L2
N=N ¼ N�1þd=(2�) log d=(2�) N ¼ o(1) and N L

�4�=d
N ¼ log�1 N ¼ o(1).

However, with respect to sufficiently regular basis functions (such as Hermite basis

functions) condition (7.8) is fulfilled for any � . d=2 when the densities p(t, x, t�, x9) and

p(t�, x9, T , y) have square-integrable derivatives up to any order. So, according to Theorem

7.1, one could take LN ¼ O(N 	) for any 0 , 	 , 1=2 to get the desired root-N consistency.

If, moreover, the coefficients Æ‘ and ª‘ decrease exponentially fast so that
P

‘Æ‘e
c‘ , 1 andP

‘ª‘e
c‘ , 1 for some positive c (which corresponds to the case of analytical densities

p(t, x, t�, x9) and p(t�, x9, T , y)), then even LN ¼ O(log N ) Fourier coefficients provide a

negligible estimation bias (see Pinsker 1980), thus leading to root-N consistency again.

Generally it is clear that properly choosing LN is essential for reducing the numerical

complexity of the procedure (see Section 9).

Remark 7.2. The conditions of Theorem 7.1 are given in terms of the Fourier coefficients Æ‘

and ª‘. We do not investigate in a rigorous way how these conditions can be transformed into

conditions on the coefficients of the original diffusion model (1.1) and the chosen

orthonormal basis. Note, however, that in the case of, for example, the Hermite basis, both

(7.7) and (7.8) follow from standard regularity conditions. For instance, when the coefficients

of (1.1) are smooth and bounded, their derivatives are smooth and bounded, and the matrix

� (s, x)� T(s, x) is of full rank for all s, x.

8. Estimation loss caused by numerical integration of SDEs

In this section we analyse the estimation loss of the kernel estimators due to application of

the Euler scheme. Let X :¼ X t,x(t�, h) and (Y , Y) :¼ (Yt�, y(T , h), Yt�, y(T , h)) be an

approximation of X t,x(t�) and (Yt�, y(T ), Yt�, y(T )), obtained by applying the Euler scheme

to the systems (1.1) and (3.6), respectively. Let r(u) be the density of the random variable

X , so r(u) ¼ ph(t, x, t�, u). Further, let q(u) be the density of Y and denote by �(u) the

conditional mean of Y given Y ¼ u. Instead of (6.4) we now consider the estimator
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�̂pp�pp :¼ 1

�d MN

XN

n¼1

XM

m¼1

Ym K
X n � Ym

�

� �
¼ 1

MN

XN

n¼1

XM

m¼1

Z nm, (8:1)

where

Z nm :¼ ��dYm K
X n � Ym

�

� �
,

with X n, n ¼ 1, . . . , N , and (Ym, Ym) m ¼ 1, . . . , M, being independent realizations of X

and (Y , Y), respectively. We thus have

E �̂pp�pp ¼ E Z nm ¼ ��d

ðð
r(u)q(v)�(v)K(��1(u � v)) du dv

¼
ðð

r(u þ �v)q(u)�(u)K(v) du dv

¼
ð

r�(u)q(u)�(u) du, (8:2)

where

r�(u) :¼
ð

r(u þ �v)K(v) dv:

From the result due to Bally and Talay (1996b) (see (1.4)) we obtain

jr�(u) � r�(u)j < Kh, (8:3)

uniform in u and � for some positive constant K. Hence, for some K1 . 0,

jE �̂pp�pp �
ð

r�(u)q(u)�(u) duj < K1 h: (8:4)

uniform in �. Further, we haveð
r�(u)q(u)�(u) du ¼ E r�(Y )Y: (8:5)

It is not difficult to show that r�(u) has derivatives which are uniformly bounded with respect

to �. Therefore, since the Euler scheme has weak order 1, we have, for some K2 . 0,

jE r�(Y )Y � E p̂pj < K2 h, (8:6)

uniform in �. Combining (8.4)–(8.6) yields

jE �̂pp�pp � E p̂pj < K3 h, (8:7)

uniform in � for some K3 . 0, and then by Lemma 6.2 we obtain the following result.

Lemma 8.1. The estimation loss jE �̂pp�pp � pj satisfies

jE �̂pp�pp � pj < K4�
2 þ K5 h,
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for some positive constants K4, K5 independent of � and h.

We now proceed with estimation of var �̂pp�pp. For var �̂pp�pp we obtain an expression similar to

(6.6) by replacing p� in (6.6) with p� :¼ E �̂pp�pp and throughout Lemma 6.3 the quantities

r, r�, r�,2, q, �2, º, º�, B� by their corresponding analogues r, r�, r�,2, q, �2, º, º�, B�

defined with respect to the random variables X and (Y , Y. Analogously to the proof of

(8.7), it follows that, for some positive constants C, C1,

jB� � B�j < Ch and






ð

r 2
�(u)�2(u)q(u) du �

ð
r2
�(u)�2(u)q(u) du





 < C1 h,

uniform in �. From our boundedness assumptions in Section 1, it follows that c(s, y) in (3.6)

is bounded (see (3.4)). As a consequence, Yt�, y(T ) is bounded and so there exists a constant

C2 . 0 such that, for every h and u,

j�(u)j ¼ jE (Yt�, y(T )jYt�, y(T ) ¼ u)j < C2:

Therefore,

jº�(u)j ¼





ð

q(u þ �v)�(u þ �v)K(v) dv





 < C3

ð
q(u þ �v)K(v) dv (8:8)

for some C3 . 0 and all u, h, �.

By Bally and Talay (1996b) again, q(u) � q(u) ¼ O(h) uniform in u; hence, º�(u) is

uniformly bounded with respect to u, h and �, and so
Ð

r(u)º2
�(u) du is uniformly bounded

with respect to h and �. Now, from Lemma 6.3 and the above arguments the following

result is obvious.

Lemma 8.2. There exist positive constants C4 and C5, not depending on h and �, such that

for N ¼ M,

var �̂pp�pp <
C4

N2�d
þ C5

N
: (8:9)

It should be noted that Lemma 6.4 is more refined than Lemma 8.2 in the sense that it

gives some kind of expansion of var p̂p. Nevertheless, it is clear that Lemmas 8.1 and 8.2

are sufficient to obtain the following main theorem.

Theorem 8.1. for M ¼ N and positive constants D, D1, D2, D3 we have

E ( �̂pp�pp � p)2 < D�4 þ D1 h2 þ D2

N2�d
þ D3

N
: (8:10)

Let us take � ¼ �N as in Theorem 6.1. Then it is clear from Theorem 6.1 that for d < 4

and h ¼ O(N�1=2) the accuracy of the estimator �̂pp�pp is O(N�1=2), and for d . 4 and

h ¼ O(N�4=(4þd)) the accuracy of �̂pp�pp is O(N�4=(4þd)). Hence by properly choosing h

dependent on N the accuracy rates for �̂pp�pp and p̂p coincide.
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Remark 8.1. For the pure forward estimator (1.7) (and the pure reverse estimator

corresponding to (4.7)) similar (but simpler) arguments give

E ( �̂pp�pp � p)2 < D4 h2 þ D5�
4 þ D6

N�d
, (8:11)

for positive constants D4, D5, D6. For comparison see also Remark 6.3.

Remark 8.2. The assertions of this section are derived only for the Euler method in the strong

sense since we essentially use the results of Bally and Talay (1996b). Most likely they remain

true in the context of methods of numerical integration in a weak sense. However, this

requires additional investigation.

Remark 8.3. Without proof we note that for the projection estimators similar conclusions can

be drawn with respect to the estimation loss due to application of the Euler scheme.

9. Implementation of the forward–reverse estimators

In the previous sections we have shown that both the forward–reverse kernel and projection

estimator have superior convergence properties compared with the classical Parzen–

Rosenblatt estimator. However, while the implementation of the classical estimator is rather

straightforward, one has to be more careful when implementing the forward–reverse

estimation algorithms. This especially concerns the evaluation of the double sum in (4.3) for

the kernel estimation. Indeed, straightforward computation would require MN kernel

evaluations, which would be prohibitive, for example, when M ¼ N ¼ 105. Fortunately, by

using kernels with small support, in some sense, we can get around this difficulty as

outlined below.

9.1. Implementation of the kernel estimator and its numerical

complexity

We assume here that the kernel K(x) used in (4.3) has a small support contained in

jxjmax < Æ=2 for some Æ . 0, where jxjmax :¼ max1<i<d jxij. This assumption is easily

satisfied in practice. For instance, for the Gaussian kernel, K(x) ¼ (2�)�d=2 exp (�jxj2=2),

which, strictly speaking, has unbounded support, in practice K(x) is negligible if for some

i, 1 < i < d, jxij . 6 and so we could take for this kernel Æ ¼ 12. Then, due to the small

support of K, the following Monte Carlo algorithm for the forward–reverse kernel

estimator is possible. For simplicity, we take t ¼ 0, t� ¼ T=2 and assume N ¼ M . For

both forward and reverse trajectory simulation we use the Euler scheme with time

discretization step h ¼ T=(2L), with 2L being the total number of steps between 0 and T .

• Simulate N trajectories on the interval [0, t�], with end points fX (n)(t�) :

n ¼ 1, . . . , Ng, at a cost of O(NLd) elementary computations.
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• Simulate N reverse trajectories on the interval [t�, T ], with end-points

f(Y (m)(T ), Y(m)(T )) : m ¼ 1, . . . , Ng at a cost of O(NLd) elementary computations.

• Search, for each m, the subsample

fX (n k )(t�) : k ¼ 1, . . . , lmg :¼ fX (n)(t�) : n ¼ 1, . . . , Ng

\ fx : jx � Y (m)(T )j max < Æ�Ng:

The size lm of this intersection is, on average, approximately N�d
N 3 fdensity of X (t�)

at Y (m)(T )g. This search procedure can be done at a cost of order O(N log N ); see, for

instance, Greengard and Strain (1991) where this is proved in the context of the Gauss

transform.

• Finally, evaluate (4.3) by

1

N 2�d
N

XN

m¼1

Xl m

k¼1

K(��1
N (X (n k )(t�) � Y (m)(T )))Y(m)(T ),

at an estimated cost of O(N2�d
N ).

For the study of complexity we use the results in Section 6. We distinguish between

d , 4 and d > 4. For 1 < d , 4 we achieve root-N accuracy by choosing �N ¼
(N=log N )�1=d . In practice, the number of discretization steps 2L (typically 100–1000) is

much smaller than the Monte Carlo number N , which is typically 105–106. Therefore, as

we see from the above algorithm, with �N ¼ (N=log N )�1=d simulation of the forward–

reverse estimator incurs a total cost of O(N log N ). Hence, the aggregated costs for

achieving �N � 1=
ffiffiffiffiffi
N

p
amount to O(N log N ) which comes down to a complexity

Ckern
� � jlog �j=�2. For d > 4 we achieve an accuracy rate �N � N�4=(4þd) by taking

�N ¼ N�2=(4þd), again at a cost of O(N log N ). So the complexity Ckern
� is of order

O(jlog �j=�(4þd)=4). For comparison we now consider the classical estimator. It is well known

(see also Remark 6.3) that for N trajectories the optimal bandwidth choice is

�N � N�1=(4þd), which yields an accuracy of �N � N�2=(4þd). The costs of the classical

estimator amounts to O(N ) and thus its complexity Cclass
� is of order O(1=�(4þd)=2). By

comparing the complexities C� and Cclass
� it is clear that the forward–reverse kernel

estimator is superior to the classical Parzen–Rosenblatt kernel estimator for any d.

9.2. Complexity of the projection estimator

From its construction in Section 7 it is clear that the evaluation of the projection estimator

(4.6) incurs a cost of order O(LN N ) elementary computations. Just as for the kernel

estimator, we now consider the complexity of the projection estimator. In Remark 7.1 we

saw that if condition (7.8) is fulfilled for a smoothness � with � . d=2, we may choose

LN ¼ (N log N )d=(4�), which yields a complexity Cproj(�) of order O(logd=(4�)j�j=�2þd=(2�)).

If, moreover, the Fourier coefficients Æ‘ and ª‘ decrease exponentially, then (see Remark

7.1) we achieve root-N accuracy by taking LN ¼ log N and so we obtain a complexity of
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order Cproj(�) ¼ jlog �j=�2 for any d. Obviously, compared to the classical estimator, the

projection estimator has in any case a better order of complexity.

Remark 9.1. For transparency, the complexity comparison of the different estimators above is

done with respect to exact solutions of the respective SDEs. Of course when Euler

approximations are used, the discretization step h must also tend to zero when the required

accuracy � tends to zero. However, it is easy to see that with respect to approximate Euler

scheme solutions the same conclusions also can be drawn.

9.3. Numerical experiments

We have implemented the classical and forward–reverse kernel estimator for the one-

dimensional example of Section 5. We fix a ¼ �1, b ¼ 1 and choose fixed initial data

t ¼ 0, x ¼ 1, T ¼ 1, y ¼ 0, for which p ¼ 0:518 831.

Let us aim to approximate the ‘true’ value p ¼ 0:518 831 using both the forward–reverse

estimator (FRE) and the classical forward estimator (FE). Throughout this experiment we

choose t� ¼ 0:5, and M ¼ N for the FRE and the FE is simply obtained by taking t� ¼ 1.

For the bandwidth we take �FE
N ¼ N�1=5 and �FRE

N ¼ N�1, yielding variances � 2
FE

� C1 N�4=5 and � 2
FRE � C2N�1, respectively. It is clear that �FE may be estimated directly

from the density estimation since the classical estimator is proportional to a double sum of

N independent random variables. As the FRE is proportional to a double sum of generally

dependent random variables it is, of course, strictly not correct to estimate its deviation in

the same way by just treating these random variables as independent. However, the result of

such an (in fact) incorrect estimation, denoted below by �*, turns out to be roughly

proportional to the correct deviation �FRE. To show this we estimate �FRE for

N ¼ 102, 103, 104, respectively, by running 50 FRE simulations for each value of N and

then compute the ratios k :¼ �FRE=�* (see Table 1). The SDEs are simulated by the Euler

scheme with time step ˜t ¼ 0:01.

So, in general applications we recommend this procedure for determination of the ratio k
which may be carried out with relatively low sample sizes and allows for simple estimation

of the variance � 2
FRE. If, for instance, we define the Monte Carlo simulation error to be two

standard deviations, the Monte Carlo error of the FRE may be approximated by 2k�*.

In this paper we have not addressed the time discretization error due to the numerical

scheme used for the simulation of the SDEs. In fact, this is conceptually the same as

Table 1. ‘True’ � FRE, �* and k ¼
� FRE=�* for different N

N �FRE �� k

102 0.068 0.050 1.4

103 0.021 0.015 1.4

104 0.007 0.005 1.4
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assuming that we have at our disposal a weak numerical scheme of sufficiently high order.

We note that if a relatively high accuracy is required in practice, the Euler scheme turns out

to be inefficient, as it involves a high number of time steps, yielding, in combination with a

high number of paths, a huge complexity. Fortunately, in most cases it will be sufficient to

use a weak second-order scheme, such as the method of Talay and Tubaro (1990). The

application of this method comes down to Richardson extrapolation of the results obtained

by the Euler method for time steps 2˜t and ˜t, respectively. However, we have to take into

account that the deviation of this extrapolation, and therefore the Monte Carlo error, is
ffiffiffi
5

p

times as high. In the experiments below we compare the FRE with the classical one for

different sample sizes. For both estimators FRE and FE we use the weak order O((˜t)2)

method of Talay and Tubaro with time discretization steps ˜t ¼ 0:02 and ˜t ¼ 0:01. From

Table 2 it is obvious that for larger N the FRE gives a higher Monte Carlo error than the

pure FE, while the computational effort involved in the FRE is only a little bit larger. For

example, the FRE gives for N ¼ 106 almost the same Monte Carlo error as the FE for

N ¼ 107. Moreover, due to the choice �N ¼ N�1 in the FRE, the bias of the FRE is

O(N�2) and so negligible with respect to its deviation being O(N�1=2). Unlike the FRE,

with the usual choice �N ¼ N�1=5, the bias of the FE is of the same order as its deviation

and so its overall error is even larger than its Monte Carlo error displayed in Table 2.
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