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Abstract

The influence of disordering upon critical behavior of the system with hidden degrees
of freedom is considered. It is shown that there is a tricritical behavior in the
constrained system, while in the unconstrained system only phase transitions of the
second order occur.
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1 Introduction

Recently, phase transitions under a constraint imposed on some “hidden” de-
grees of freedom coupled to the critical ones have again attracted attention
[1]. As it is well known, many real systems possess a hidden degree of freedom
[2–4], which can be described as the nonfluctuating parameter in the vicinity
of the phase transition. Fisher [5] stressed the importance of the constraint
upon the hidden degree of freedom. Fisher’s theory of phase transition in con-
strained systems was generalized [6,7] to include the possibility of first- order
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phase transitions. In particular, it was found that the tricritical behavior co-
incides with the critical behavior of the ideal system provided α > 0 (α is
the critical exponent of the specific heat) and with the renormalized one pro-
vided α < 0. Early renormalization group studies of systems with constrained
nonfluctuating parameter were presented in Refs. [4,8,9].

As it is shown in Ref.[1], the nature of a phase transition may strongly depend
on the constraint imposed on the system. For the case of the unconstrained
system the stability criterion for the occurrence of continuous phase transition
can be found within the mean field theory. On the other hand, for the case of a
constrained system a different criterion, which is distinct from the mean-field
one, is calculated. This criterion results in a fluctuation-induced renormalized
Heisenberg tricritical point.

The main purpose of this paper is to consider the influence of disordering upon
critical behavior of a system with hidden degrees of freedom and to focus at-
tention on a criterion for the occurrence of continuous phase transition in this
system. Such disordering can be caused, e.g., by the presence of “frosen” impu-
rities [10]. The analysis of renormalization group equations for random system
with constrained nonfluctuating parameter has been presented in Ref.[11]. It
was found the fixed points and shortly described the critical behavior. Here
we discuss the tricritical behavior and especially a first-order transition taking
into account results of [1].

2 Renormalization group equations

Let us consider the disordered system in which an n-component vector or-
der parameter S(x) is coupled with the scalar nonfluctuating order parameter
y(x). This system can be described in momentum space by the effective Hamil-
tonian [11]

H =
1

2

∫

dq1

(2π)d
dq2

(2π)d
r(q1,q2)S(q1)S(q2) +

+
∫

dq1

(2π)d
dq2

(2π)d
dq3

(2π)d
dq4

(2π)d
u(q1,q2,q3,q4)S(q1)S(q2)S(q3)S(q4) +

+
∫

dq1

(2π)d
dq2

(2π)d
dq3

(2π)d
µ(q1,q2,q3)y(q1)S(q2)S(q3) +

+
1

2

∫

dq1

(2π)d
dq2

(2π)d
β(q1,q2)y(q1)y(q2) +

∫

dq

(2π)d
h(q)y(q). (1)

The Hamiltonian (1) can be used to study the ferromagnetic phase transition
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in the three-dimensional Hubbard model with frosen impurities. Herewith, the
coupling µ is pure imaginary

µ = i(kTc)
1/2U3/2N ′(Ef ), (2)

where N(Ef ) is the density of states on the Fermi energy Ef and U is the
Coulomb potential. The study of this case is of particular interest.

Following the standard method of the renormalization group [12] and its exten-
sion to random systems [10] the recurrence relations for the potential averages
over the probability distribution function can be constructed by averaging
on the recurrence relations for the potentials of the Hamiltonian (1) of the
inhomogenious system and for the second cumulants:

r′= b2{r + [4(n + 2)ũ− ∆̃ + 2nz]A(r)}, (3)

ũ′= bǫ{ũ−K4 ln b[4(n + 8)ũ2 − 6ũ∆̃]}, (4)

∆̃′ = bǫ{∆̃−K4 ln b[8(n+ 2)ũ∆̃− 4∆̃2]}, (5)

z′ = bǫ{z −K4 ln b[8(n + 2)ũz + 2nz2 − 2z∆̃]}, (6)

w′= bǫ{w −K4 ln b[8(n + 2)ũw + 2nw2 + 4zw − 2w∆̃]}, (7)

where we introduce the following symbols for second cumulants: ∆ ∼< rr >c,
ν ∼< rh >c, ρ ∼< hh >c, and use the notation: ũ = u− µ2

2β
, ∆̃ = ∆− 4µν

β
+ 4µ2ρ

β2 ,

z = µ2

β
−

µ2

0

β0

, w =
µ2

0

β0

. All other definitions are standard in renormalization

group theory: K4 = 1
8π2 is a quality proportional to the surface area of the

unit sphere in d = 4 space, b is the scale parameter and A(r) is the integral
of a closed loop of pair correlation functions (see, also, [13]).

In Eqs.(3-7) we separate the coefficient of the nonfluctuating parameter y(q =
0) from those of y(q 6= 0) because of their possible role in constraining systems
[4,8]. We make a shift of the variable y(q = 0) for the disappearance of the
linear term in the variable y on each step of the renormalization procedure.
It is also necessary to write the equations for the cumulants ν, ν0, ρµ, ρ0µ0.
However, the structure of the new equations is such that they do not violate the
stability of fixed points, which were defined by Eqs.(3-7). Using the definition
of cumulants ∆, ν, ρ one can show that ∆̃ ≥ 0.

Before discussing the renormalization group analysis, consider the mean-field
theory results. After integrating over the nonfluctuating parameter in (1), we
obtain a new effective Hamiltonian for order parameter S(q). A solution of this
new integrated out effective Hamiltonian in the mean-field approximation gives
the boundary conditions of instability for the Hubbard model: λs − λ(0)

c = 0,
λ(0)
c = 0, where λs ≡ u and λ(0)

c = µ2
0/2β0, for unconstrained system (λ(0)

c =
λ(1)
c = λ) and λs = 0, λ(1)

c = 0, where λ(1)
c = µ2/2β, for the constrained system
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λs

λc

Fig. 1. Phase diagram in the mean-field approximation for the unconstrained system

λs

λ
(1)
c

Fig. 2. Phase diagram in the mean-field approximation for the constrained system

(λ(0)
c = 0). These conditions divide the first and second order phase transition

ranges in (λc, λ
(1)
c )-λs–plane (Fig. 1 and Fig. 2, see, also, [1]). Using the Stoner

criterion rs ≡ 1 − (U/2)N(Ef) = 0, we have the condition for a continuous
phase transition for the unconstrained system

3(N ′(Ef ))
2

2N(Ef )
> N ′′(Ef ), (8)

while the first order phase transition occurs for the contrary case. For the
constrained system we have the continuous phase transition, if

N ′′(Ef ) < 0. (9)

According to the mean-field theory for random systems, the impurities do not
influence on the stability ranges of the system.

A feature of the recurrence relations is a closed system of two equations: (4)
and (5). It is easy to find the fixed points of this system. We have as usual
the Gaussian fixed point (G) with ũ∗ = ∆̃∗ = 0, the Heisenberg fixed point
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gs

gc(g
(1)
c )

H2G2

H1(RH1)

G1(RG1)

Fig. 3. Flow trajectories in the ∆̃ = 0 plane

gs

gc(g
(1)
c )

R2

R1(RR1)

Fig. 4. Flow trajectories in the ∆̃ = ∆̃∗ plane

(H) with ũ∗ = ǫ/4K4(n + 8), ∆̃∗ = 0, the non-physical fixed point with
ũ∗ = 0, ∆̃∗ = −ǫ/4K4, and random fixed point (R) with ũ∗ = ǫ/16K4(n− 1),
∆̃∗ = ǫ(4−n)/8K4(n−1). Using these fixed points, one can easy find the rest
fixed points from the recurrence relations.

The full list of fixed points, the critical behavior, which is determined by their
values, and their stability have been presented in [11]. We can see from the
Table in [11] that some parameters and their selfvalues λi change sign at n = 4.
This changing in sign strongly influences the forms of flow trajectories, and
we are obliged further to discuss separately the n < 4 and n > 4 cases. It is
convenient to use the two parameter spaces: (λs, λc, ∆̃) for the unconstrained
case (λ(0)

c = λ(1)
c = λc) and (λs, λ

(1)
c , ∆̃) for the constrained case (λ(0)

c = 0).
Moreover, it is turn out that the interesting fixed points are in the planes ∆̃ = 0
and ∆̃ = ∆̃∗ 6= 0 in both spaces. Due to the relation ũ = u−µ2/2β ≡ λs−λ(1)

c

all fixed points align on two parallel lines in these planes. The flow trajectories
are identical in both spaces, so we can demonstrate them simultaneously in the
∆̃ = 0 (Fig. 3) and ∆̃ = ∆̃∗ (Fig. 4) planes in the spaces of the renormalized
coupling constants gs, g(0)c , and g(1)c . The notation of fixed points, which
correspond to the subspace (λs, λ

(1)
c , ∆̃) are written in brackets. It is important
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to point out that fixed points with z∗ ≡ 2
(

λ(1)∗

c − λ(0)∗

c

)

6= 0 determine the

renormalized critical behavior in accordance with [5].

One can see from Fig. 3 and Fig. 4 that the most stable fixed points and,
hence, the critical behavior is independent of the existence of constraint. One
point is H2, when n > 4, and the critical behavior is ideal for a pure system
and another point is R2, when n < 4, and the critical behavior is determined
by the presence of the frosen inhomogeneities. Thus, the behavior coincides
with the one found in [10].

The critical behavior at the boundary of the stability region is determined by
the fixed points R1 (for n < 4) and H1 (for n > 4) in the system without
constraints, and by the “renormalized” fixed points RR1 (for n < 4) and RH1

(for n > 4) in system with constraints. It is easy to see that the boundary of
the stability region in constrained systems reduces the criterion (9) for pure
system to

3(N ′(Ef ))
2

2N(Ef )
<

αH/nνH
ǫ/(n + 8) + αH/nνH

N ′′(Ef ) +O(ǫ), (10)

where αH = 4−n
2(n+8)

ǫ and νH = 1
2
+ n+2

4(n+8)
ǫ are the specific heat and the cor-

relation length critical exponents for the Heisenberg fixed point, respectively
(see, also, [1]). By analogy with a pure system, one can find the corresponding
criterion for a random constrained system in the form

3(N ′(Ef ))
2

2N(Ef )
<

αR/nνR
ǫ/4(n− 1) + αR/nνR

N ′′(Ef) +O(ǫ), (11)

where αR = n−4
8(n−1)

ǫ and νR = 1
2
+ 3n

32(n−1)
ǫ are corresponding exponents for

the random fixed point. Thus, in the constrained system the flow trajectories
run away in both the pure system fixed point H1 and the random fixed point
R1, and, hence, the critical behavior at the boundary of the stability region
reduces to the tricritical behavior.

3 The tricritical behavior

Using the standard field theory and renormalization group method (see, for
example, [14]), we obtained the next equation for the free energy in the one
loop approximation

βF (T,M) =
1

2
rs(T )M

2 +
1

4!
(λs − λ(0)

c )M4 −
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−
1

2
∆̃M2

∫

dq1

rs(T ) + q2
−

6

4!
λ2∆̃M4

∫

dq1

(rs(T ) + q2)2
+

+
1

2
(n− 1)

∫

dq1 ln
(

1 +
λ1M

2/6

rs(T ) + q2

)

+

+
1

2

∫

dq1 ln
(

1 +
λ2M

2/6

rs(T ) + q2

)

, (12)

where M =
(

∑

αM
2
α

)1/2
is the magnetization, and

λ1 =
1

3
(λs − λ(0)

c ), λ2 =
1

3
(3λs − λ(0)

c − 2λ(1)
c ). (13)

Note that here we used coefficients of Eq.(1) in form: u = λs/4!, µ
2
0/2β0 =

λ(0)
c /4!, µ2/2β = λ(1)

c /4!. To get the renormalized free energy, we used the
theory of Refs.[14] and [1]. Finally, we have

βF (t,M)− βF (t, 0)=
1

2
t̃M2 +

1

4!
(g̃s − g̃(0)c )M4 +

(n− 1)f(t+
1

2
g1M

2) + f(t+
1

2
g2M

2), (14)

where t̃, g̃s, and g̃(0)c are the renormalized by frozen impurities values, g1 and
g2 are renormalized coupling constants λ1 and λ2 and

f(x) =
1

8
x2(ln x−

1

2
). (15)

For the unconstrained case g(0)c = g(1)c = gc we have the conventional φ
4–model

with an effective coupling constant proportional to gs − gc and the runaway
flow trajectories do not intersect the boundary of the stability range. Hence, we
can suggest that the phase transition remains second order. It should be noted
here, that the fixed points H1 and R1 are not tricritical points. In particular,
this fact is in accordance with the result for pure systems [1]. Also, following
[1], we can look on the lines connecting the origin and fixed points H1 and R1

in Figs. 3 and 4 as boundary lines between two second order phase transition
regions with different critical behaviors.

For the constrained case g(0)c 6= g(1)c the runaway flow trajectories intersect
the boundary of stability range. The critical behavior at the boundary of that
stability region is determined by the points RR1 (n < 4) and RH1 (n > 4). We
suppose that this means rather the smeared phase transition than the phase
transition of first order, in accordance with [10] and [15].
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In summary, we considered the influence of disordering upon the critical be-
havior in systems with hidden degrees of freedom taking into account the
possible role of the constraint upon these degrees of freedom. It is shown that
there are the tricritical fixed points in the constrained systems and we have
rather smeared phase transition than the first order transition, while in the un-
constrained system all phase transitions are the phase transition of the second
order.
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