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SPECIAL ELEMENTS IN THE LATTICE

OF OVERCOMMUTATIVE SEMIGROUP VARIETIES

REVISITED

V. YU. SHAPRYNSKǏI AND B. M. VERNIKOV

Abstract. We completely determine all distributive, codistributive, stan-
dard, costandard, and neutral elements in the lattice of overcommutative
semigroup varieties, thus correcting a gap contained in [5].

1. Introduction

The class of all semigroup varieties forms a lattice under the following natu-
rally defined operations: for varieties X and Y, their join X ∨ Y is the variety
generated by the set-theoretical union of X and Y (as classes of semigroups),
while their meet X ∧ Y coincides with the class-theoretical intersection of X
and Y. This lattice has been intensively studied for about four decades. A
systematic overview of the material accumulated here is given in the recent
survey [4].

It is a common knowledge that the lattice SEM of all semigroup varieties
is divided into two large sublattices with essentially different properties: the
coideal OC of all overcommutative varieties (that is, varieties containing the
variety of all commutative semigroups) and the ideal of all periodic varieties
(that is, varieties consisting of periodic semigroups).

The global structure of the lattice OC has been revealed by Volkov in [14].
It is proved there that this lattice decomposes into a subdirect product of its
certain intervals and each of these intervals is anti-isomorphic to the congruence
lattice of a certain unary algebra of a special type (namely, of a so-called G-set;
a basic information about G-sets see in [3], for instance). The exact formulation
of this result may be found also in [4, Theorem 5.1]. We do not reproduce this
formulation here because we do not use it below.

There are several articles where special elements of different types in the
lattice SEM have been examined (see [2, 6–13, 15]). We refer an interested
reader to [4, Section 14] for an overview of the most part of results obtained in
these articles.

Recall that an element x of a lattice 〈L; ∨,∧〉 is called distributive if

∀y, z ∈ L : x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);
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standard if

∀y, z ∈ L : (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z);

neutral if, for all y, z ∈ L, the sublattice of L generated by x, y, and z is dis-
tributive. Codistributive [costandard ] elements are defined dually to distribu-
tive [respectively standard] ones. An extensive information about elements of
all these five types in abstract lattices may be found in [1, Section III.2], for in-
stance. Note that any [co]standard element is [co]distributive, and an element is
neutral if and only if it is standard and costandard simultaneously (see [1, The-
orem III.2.5], for instance). On the other hand, a [co]distributive element may
be not [co]standard, while a [co]standard element may be not neutral.

A complete description of neutral elements in the lattice SEM has been given
in [15, Proposition 4.1] (see also [4, Theorem 14.2]). In [12], all distributive
elements in SEM are completely determined. In [11], quite a strong necessary
condition for semigroup varieties to be a codistributive element in SEM is
obtained. In particular, all varieties with each of these three properties (except
the trivial extreme case of the variety SEM of all semigroups) turn out to be
periodic varieties.

So, an examination of special elements of all the mentioned types in the
lattice SEM gives no any information concerning the lattice OC. Aiming to
obtain some new knowledge about this lattice, it is natural to investigate its
special elements.

Such investigations have been started by the second author in [5]. Five types
of special elements (namely, distributive, codistributive, standard, costandard,
and neutral elements) in the lattice OC have been considered there. Unfortu-
nately, it turns out that considerations in [5] contain a gap, and the main result
of this article is incorrect. Namely, it was proved in [5] that, for an overcommu-
tative semigroup variety, the properties of being a distributive element of OC,
of being a codistributive element of OC, of being a standard element of OC, of
being a costandard element of OC, and of being a neutral element of OC are
equivalent. This result of [5] is true. But, besides that, the main result of [5]
contains a list of all overcommutative varieties that possess the five mentioned
properties. Unfortunately, this list turns out to be non-complete. All varieties
from the list really have all the mentioned properties, but there are many other
such varieties. The objective of this article is to give a correct description of
distributive, codistributive, standard, costandard, and neutral elements in the
lattice OC.

The article is structured as follows. In Section 2, we introduce a necessary
notation and formulate the main result of the article (Theorem 2.2). In Sec-
tion 3, we prove several auxiliary facts. Sections 4 and 5 are devoted to the
proof of Theorem 2.2. In Section 6, we show that this theorem can not be
improved, in a sense. Finally, in Section 7, we formulate some open problems.

2. Preliminaries and summary

We denote by F the free semigroup over a countably infinite alphabet {x1, x2,
. . . , xn, . . . }. As usual, elements of F are called words. By F 1 we denote
the semigroup F with the empty word ajoined. The symbol ≡ stands for the
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equality relation on F and F 1. If u is a word, then ℓ(u) denotes the length of u,
ℓi(u) is the number of occurrences of the letter xi in u, c(u) stands for the set of
all letters occurring in u, and n(u) = |c(u)| is the number of letters occurring in
u. An identity u ≈ v is called balanced if ℓi(u) = ℓi(v) for all i. It is a common
knowledge that if an overcommutative variety satisfies some identity then this
identity is balanced.

Let m and n be integers with 2 ≤ m ≤ n. A partition of the number n into

m parts is a sequence of positive integers (ℓ1, ℓ2, . . . , ℓm) such that

ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓm and
m∑

i=1

ℓi = n.

The numbers ℓ1, ℓ2, . . . , ℓm are called components of the partition λ. We denote
by Λn,m the set of all partitions of the number n into m parts and by Λ the
union of the sets Λn,m for all natural numbers m and n with 2 ≤ m ≤ n. If
λ ∈ Λn,m then we denote the numbers n and m by n(λ) and m(λ) respectively.

If u is a word then we denote by part(u) the partition of the number ℓ(u) into
n(u) parts consisting of integers ℓi(u) for all i such that xi ∈ c(u) (the numbers
ℓi(u) are placed in part(u) in non-increasing order). If u ≈ v is a balanced
identity then, obviously, ℓ(u) = ℓ(v), n(u) = n(v), and part(u) = part(v). We
call the partition part(u) a partition of the identity u ≈ v. We denote the
numbers ℓ(u) = ℓ(v) and n(u) = n(v) by ℓ(u ≈ v) and n(u ≈ v) respectively,
and the partition part(u) = part(v) by part(u ≈ v).

Let λ = (ℓ1, ℓ2, . . . , ℓm) ∈ Λn,m. We denote by Wn,m,λ, or simply Wλ, the
set of all words u such that ℓ(u) = n, c(u) = {x1, x2, . . . , xm}, ℓi(u) ≥ ℓi+1(u)
for all i = 1, 2, . . . ,m − 1, and part(u) = λ. It is evident that every balanced
identity u ≈ v with ℓ(u ≈ v) = n, n(u ≈ v) = m, and part(u ≈ v) = λ is
equivalent to some identity s ≈ t where s, t ∈ Wn,m,λ.

We call sets of the kindWn,m,λ transversals. We say that an overcommutative
variety V reduces [collapses] a transversal Wn,m,λ if V satisfies some non-trivial
identity [all identities] of the kind u ≈ v with u, v ∈ Wn,m,λ. An overcommuta-
tive variety V is said to be greedy if it collapses any transversal it reduces. The
following assertion has been proved in [5].

Proposition 2.1. An overcommutative semigroup variety is a distributive [co-
distributive, standard, costandard, neutral ] element of the lattice OC if and

only if it is greedy. �

This assertion was not formulated in [5] explicitly but it directly follows from
the proof of Theorem 2 in [5] (and the corresponding part of the proof in [5] is
correct).

It is an appropriate place here to indicate the error made in [5]. Let m and n
be positive integers with 2 ≤ m ≤ n and λ ∈ Λn,m. A semigroup variety given
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by an identity system Σ is denoted by varΣ. We put

Xn = var {u ≈ v | the identity u ≈ v is balanced and ℓ(u ≈ v) ≥ n},

Xn,m = Xn+1 ∧ var {u ≈ v | the identity u ≈ v is balanced, ℓ(u ≈ v) = n,

and n(u ≈ v) ≤ m},

Xn,1 = Xn+1,

Xn,m,λ = Xn,m−1 ∧ var{u ≈ v | u, v ∈ Wn,m,λ}.

It is claimed in [5] without any proof that an overcommutative variety is
greedy if and only if it coincides with one of the varieties SEM, Xn, Xn,m or
Xn,m,λ. Combining this claim with Proposition 2.1, we obtain the main result
of [5]: the varieties SEM, Xn, Xn,m, Xn,m,λ, and only they are [co]distributive,
[co]standard, and neutral elements in OC. In actual fact, it is true that all
these varieties are elements of the mentioned types in OC. But the list of
[co]distributive, [co]standard, and neutral elements in OC is not exhausted by
the varieties SEM, Xn, Xn,m, and Xn,m,λ. There are many other varieties with
such a property. Exactly this fact has been so unfortunately overseen in [5].

For a partition λ = (ℓ1, ℓ2, . . . , ℓm) ∈ Λn,m, we define numbers q(λ), r(λ),
and s(λ) by the following way:

q(λ) is the number of ℓi’s with ℓi = 1 (if ℓm > 1 then q(λ) = 0);

r(λ) is the sum of all ℓi’s with ℓi > 1 (if ℓ1 = 1 then r(λ) = 0);

s(λ) = max {r(λ)− q(λ)− δ, 0}

where

δ =

{

0 whenever n = 3,m = 2, and λ = (2, 1),

1 otherwise.

If k is a non-negative integer then λk stands for the following partition of n+ k
into m+ k parts:

λk = (ℓ1, ℓ2, . . . , ℓm, 1, . . . , 1
︸ ︷︷ ︸

k times

)

(in particular, λ0 = λ).
For a partition λ ∈ Λn,m, we put

Wn,m,λ = var {u ≈ v | u, v ∈ Wn,m,λ} and Sλ =

s(λ)
∧

i=0

Wn+i,m+i,λi.

Sometimes we will write Wλ rather than Wn,m,λ.
The main result of the article is the following

Theorem 2.2. For an overcommutative semigroup variety V, the following are

equivalent:

(i) V is a distributive element of the lattice OC;

(ii) V is a codistributive element of the lattice OC;

(iii) V is a standard element of the lattice OC;

(iv) V is a costandard element of the lattice OC;

(v) V is a neutral element of the lattice OC;
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(vi) either V = SEM or V =
k∧

i=1
Sλi

for some partitions λ1, λ2, . . . , λk ∈ Λ.

The following claim was formulated in [5] as a corollary of the main result of
that article. Theorem 2.2 shows that the claim is correct.

Corollary 2.3. The set of all [co]distributive elements of the lattice OC is

countably infinite. �

This corollary is of some interest because the set of all overcommutative
semigroup varieties is well known to be uncountably infinite. On the other
hand, it is interesting to note that the set of all neutral elements in the lattice
OC is infinite, while the set of all neutral elements in the lattice SEM consists
of 5 varieties only [15, Proposition 4.1].

In view of Proposition 2.1, Theorem 2.2 is equivalent to the following

Proposition 2.4. An overcommutative semigroup variety V satisfies the con-

dition (vi) of Theorem 2.2 if and only if it is greedy.

It is this claim that will be verified in Sections 4 and 5 (in fact, we prove the
‘only if’ and ‘if’ parts of Proposition 2.4 in Sections 4 and 5 respectively). To
prepare this proof, we introduce some order relation on the set Λ and consider
some properties of this relation in Section 3.

3. An order relation on the set Λ

Let λ = (ℓ1, ℓ2, . . . , ℓm) ∈ Λn,m where m ≥ 3 and 1 ≤ i < j ≤ m. We denote
by Ui,j(λ) the partition of the number n into m− 1 parts with the components
ℓ1, ℓ2, . . . , ℓi−1, ℓi+1, . . . , ℓj−1, ℓj+1, . . . , ℓm, and ℓi + ℓj (these components
are written in Ui,j(λ) in non-increasing order). We will say that the partition
Ui,j(λ) is obtained from λ by the union of components ℓi and ℓj. The partitioin
obtained from λ by a finite (may be empty) set S of unions of components is
denoted by US(λ); in particular, U∅(λ) = λ.

We introduce a binary relation � on the set Λ by the following rule:

λ � µ if and only if µ = US

(
λk

)
for some S and k.

The principal property of the relation � is given by the following

Lemma 3.1. The relation � is a partial order on the set Λ.

Proof. Reflexivity of � is evident because λ = U∅

(
λ0

)
. The claim that � is

transitive also is evident because if µ = US

(
λk

)
and ν = UT

(
µℓ
)
then ν =

US∪T

(
λk+ℓ

)
. To prove that � is antisymmetric, we suppose that λ � µ and

µ � λ for some λ, µ ∈ Λ. Then µ = US

(
λk

)
and λ = UT

(
µℓ
)
for some S, T , k,

and ℓ. Let n(λ) = n and n(µ) = q. Then q = n+ k and n = q + ℓ. Therefore,
q = q + k + ℓ, whence k + ℓ = 0. This means that k = ℓ = 0. Thus, µ = US(λ)
and λ = UT (µ). If S 6= ∅ then r < m. But m ≤ r because λ is obtained from
µ by unions of components. Therefore, S = ∅ and µ = U∅(λ) = λ. �

Now we are going to show that the partial order � has some nice properties
that will be played the crucial role in Section 5. The first such property is given
by the following
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Lemma 3.2. The partially ordered set 〈Λ;�〉 satisfies the descending chain

condition.

Proof. Let λ, µ ∈ Λ and λ � µ. Put n(λ) = n and n(µ) = q. Then q ≤ n.
Evidently, the set

⋃

q≤n
2≤r≤q

Λq,r

is finite. Thus, there exists finitely many partitions µ with µ � λ only. This
immediately implies the desirable conclusion. �

We define one more binary relation E on the set Λ by the following rule. Let
λ, ν ∈ Λ, λ = (ℓ1, ℓ2, . . . , ℓm), and ν = (n1, n2, . . . , nk). Then λE ν if and only
if m ≤ k and ℓi ≤ ni for all i = 1, 2, . . . ,m. It is evident that E is a partial
order on Λ. The following claim shows a relationship between orders � and E.

Lemma 3.3. Let λ, ν ∈ Λ. If λE ν then λ � ν.

Proof. Let λ = (ℓ1, ℓ2, . . . , ℓm) and ν = (n1, n2, . . . , nk). Then m ≤ k and
ℓi ≤ ni for all i = 1, 2, . . . ,m. Put s = n(ν)− n(λ). It is evident that s ≥ 0. If
s = 0 then λ = ν and we are done. Let now s > 0. By the trivial induction,
it suffices to consider the case s = 1. Then either k = m + 1, ℓi = ni for all
i = 1, 2, . . . ,m, and nk = 1 or k = m, ni = ℓi+1 for some i ∈ {1, 2, . . . ,m} and
nj = ℓj for all j 6= i. It is evident that ν = U∅

(
λ1

)
in the former case, while

ν = Ui,m+1

(
λ1

)
in the latter one. Thus, λ � ν in any case. �

The second important property of the relation � is given by the following

Lemma 3.4. The partially ordered set 〈Λ;�〉 does not contain infinite anti-

chains.

Proof. Arguing by contradiction, suppose that Λ contains an infinite anti-
chain A0. Put m1 = min {m(λ) | λ ∈ A0}. Let us fix a partition λ1 =
(ℓ11, ℓ

1
2, . . . , ℓ

1
m1

) ∈ A0. If ν = (n1, n2, . . . , nk) is an arbitrary partition from A0

then λ1 � ν, whence λ1 5 ν by Lemma 3.3. Since m1 ≤ k, this means that
ℓ1i > ni for some i ∈ {1, 2, . . . ,m1}. The set A0 is infinite, while the index i
runs over the finite set {1, 2, . . . ,m1}. Hence there is an index i1 ≤ m1 such
that ni1 < ℓ1i1 for an infinite set of partitions A1 ⊆ A0. Put j1 = ℓ1i1 .

Putm2 = min {m(λ) | λ ∈ A1}. Let us fix a partition λ2 = (ℓ21, ℓ
2
2, . . . , ℓ

2
m2

) ∈
A1. The same arguments as in the previous paragraph show that there is a
number i2 ≤ m2 and an infinite set A2 ⊆ A1 such that ni2 < ℓ2i2 for every

ν = (n1, n2, . . . , nk) ∈ A2. Put j2 = ℓ2i2 .
Continuing this process, we construct a sequence of infinite sets of partitions

A0 ⊇ A1 ⊇ A2 ⊇ · · · , a sequence of partitions {λs = (ℓs1, ℓ
s
2, . . . , ℓ

s
ms

) | s ∈ N},
and two sequences of numbers {is | s ∈ N} and {js | s ∈ N} such that, for any
s ∈ N, the following holds: λs ∈ As−1, is ≤ ms, js = ℓsis , and nis < js for any
ν = (n1, n2, . . . , nk) ∈ As. The choice of the partitions λ1, λ2, . . . guarantees
that if p > q then

ℓpiq < ℓqiq = jq.
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In particular, if p > q and ip = iq then

jp = ℓpip = ℓpiq < jq.

This means that all pairs of the kind (is, js) are different. Furthermore, if ip ≥ iq
then ℓpip ≤ ℓpiq because all partitions λ1, λ2, . . . are non-increasing sequences of

numbers. Therefore, if p > q and ip ≥ iq then

jp = ℓpip ≤ ℓpiq < jq.

Put ir = min {is | s ∈ N}, jt = min {js | s ∈ N}, and h = max {r, t}. If s > h
then is ≥ ir and js ≥ jt, whence js < jr and is < it. We see that both the
sequences {is | s ∈ N} and {js | s ∈ N} are bounded. But this is impossible
because all pairs of the kind (is, js) are different. The contradiction completes
the proof. �

4. Proof of Proposition 2.4: necessity

Here we aims to verify that if an overcommutative variety satisfies the con-
dition (vi) of Theorem 2.2 then it is greedy. We start with some new notation
and several auxiliary facts.

For arbitrary words w1, w2 and an identity system Σ, we write w1
Σ

−→ w2

if there exist a, b ∈ F 1, s, t ∈ F , and an endomorphism ζ on F such that
w1 ≡ aζ(s)b, w2 ≡ aζ(t)b, and the identity s ≈ t belongs to Σ. It is a common
knowledge that an identity u ≈ v follows from a system Σ if and only if there
exists a sequence of words w0, w1, . . . , wℓ such that

(4.1) u ≡ w0
Σ

−→ w1
Σ

−→ · · ·
Σ

−→ wℓ ≡ v.

This sequence is called a deduction of the identity u ≈ v from Σ. Note that if
Σ consists of balanced identities then ℓ(wi) = ℓ(u ≈ v), n(wi) = n(u ≈ v), and
part(wi) = part(u ≈ v) for all i = 0, 1, . . . , ℓ.

Lemma 4.1. Let u be a word and ξ an endomorphism on F such that ℓ(ξ(u)) =
ℓ(u). Then part(u) � part(ξ(u)).

Proof. Put λ = part(u). It is clear that ξ(x) is a letter for every letter x.
The requirement conclusion follows from the following evident observation:
part(ξ(u)) = US

(
λ0

)
where S is a finite (may be empty) set of unions of com-

ponents of λ corresponding to letters from c(u) with the same image under
ξ. �

Lemma 4.2. Let λ = (ℓ1, ℓ2, . . . , ℓm) ∈ Λn,m. If a non-trivial identity u ≈ v
holds in the variety Sλ then λ � part(u ≈ v).

Proof. We put

Σ = {f ≈ g | there is i ∈ {0, 1, . . . , s(λ)} with f, g ∈ Wn+i,m+i,λi}.

Thus, Sλ = varΣ. Let (4.1) be a deduction of the identity u ≈ v from Σ. Note
that ℓ ≥ 1 because the identity u ≈ v is non-trivial. We have w0 ≡ aζ(s)b
and w1 ≡ aζ(t)b for some homomorphism ζ on F , some a, b ∈ F 1, and some
s, t ∈ Wn+i,m+i,λi where i ∈ {0, 1, . . . , s(λ)}.
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If ℓ(aζ(s)b) = ℓ(s) then the words a and b are empty and ℓ(ζ(s)) = ℓ(s).
Here we may apply Lemma 4.1 and conclude that

λ � U∅

(
λi
)
= λi = part(s) � part(ζ(s)) =

= part(aζ(s)b) = part(w0) = part(u ≈ v).

Therefore, λ � part(u ≈ v), and we are done.
Suppose now that ℓ(aζ(s)b) > ℓ(s). For each j = 1, 2, . . . ,m + i, we denote

by yj the first letter of the word ζ(xj). Thus, ζ(xj) ≡ yjuj for some uj ∈ F 1.
We have

part(aζ(s)b) = part(a(ζ(x1))
ℓ1 · · · (ζ(xm))ℓmζ(xm+1) · · · ζ(xm+i)b) =

= part(a(y1u1)
ℓ1 · · · (ymum)ℓmym+1um+1 · · · ym+ium+ib) =

= part(yℓ11 · · · yℓmm ym+1 · · · ym+iu
ℓ1
1 · · · uℓmm um+1 · · · um+iab).

Let k = ℓ(aζ(s)b)− ℓ(s). Put

c1 ≡ yℓ11 · · · yℓmm ym+1 · · · ym+i;

c2 ≡ uℓ11 uℓ22 · · · uℓmm um+1 · · · um+iab;

c ≡ c1c2 ≡ yℓ11 · · · yℓmm ym+1 · · · ym+iu
ℓ1
1 · · · uℓmm um+1 · · · um+iab;

d ≡ xℓ11 · · · xℓmm xm+1 · · · xm+i+k.

Since part(c) = part(aζ(s)b) and part(c1) = part(s), we have ℓ(c) = ℓ(aζ(s)b)
and ℓ(c1) = ℓ(s). Besides that, ℓ(c) = ℓ(c1) + ℓ(c2). Therefore,

ℓ(c2) = ℓ(c)− ℓ(c1) = ℓ(aζ(s)b)− ℓ(s) = k.

It is convenient for us to rewrite the word c2 in the form c2 ≡ z1z2 . . . zk where
z1, z2, . . . , zk are (not necessarily different) letters. Let ξ be an endomorphism
on F such that

ξ(xj) ≡

{

yj whenever 1 ≤ j ≤ m+ i,

zj−m−i whenever m+ i+ 1 ≤ j ≤ m+ i+ k.

Then c ≡ ξ(d). It is clear that

ℓ(d) = ℓ(c1) + k = ℓ(s) + ℓ(aζ(s)b)− ℓ(s) = ℓ(aζ(s)b) = ℓ(c) = ℓ(ξ(d)).

Now we may apply Lemma 4.1 and conclude that

λ � U∅

(
λk

)
= λk = part(d) � part(ξ(d)) = part(c) =

= part(aζ(s)b) = part(w0) = part(u ≈ v).

Therefore, λ � part(u ≈ v), and we are done. �

Lemma 4.3. Let λ, µ ∈ Λ. If µ = US(λ) for some finite set S of unions of

components then Wλ ⊆ Wµ.

Proof. Let λ = (ℓ1, ℓ2, . . . , ℓm) ∈ Λn,m. By the trivial induction, it suffices to
consider the case when µ = Ui,j(λ) for some i and j. We have to verify that
if u, v ∈ Wn,m−1,µ then the identity u ≈ v holds in Wλ. Since part(u ≈ v) =
Ui,j(λ), there is a letter xk with ℓk(u) = ℓk(v) = ℓi+ ℓj . Let xp and xq be some
letters such that xp, xq /∈ c(u). One can change the first ℓi occurences of xk in



SPECIAL ELEMENTS IN THE LATTICE OF OVERCOMMUTATIVE VARIETIES 9

u and in v by xp, while the last ℓj occurences of xk in u and in v by xq. We
obtain some identity s ≈ t with part(s ≈ t) = λ. Hence the variety Wn,m,λ

satisfies s ≈ t. If we substitute xk for xp and xq in s ≈ t then we return to the
identity u ≈ v. Therefore, u ≈ v follows from s ≈ t, whence u ≈ v holds in
Wn,m,λ. �

Recall that a letter xi is called simple in a word u if ℓi(u) = 1.

Lemma 4.4. If λ ∈ Λn,m and s(λ) = 0 then Wn,m,λ ⊆ Wn+k,m+k,λk for any

positive integer k.

Proof. The definition of the number s(λ) immediately implies that if s(λ) = 0
then s

(
λk

)
= 0 as well for any k > 0. This observation implies that, by the

trivial induction, it suffices to consider the case k = 1.
First of all, we note that λ 6= (2, 1) because s(λ) = 1 otherwise. For brevity,

put q = q(λ), r = r(λ), s = s(λ), and t = m − q. Since λ 6= (2, 1), we have
δ = 1 and therefore, s = max {r − q − 1, 0}. The equality s = 0 implies now
that r − q − 1 ≤ 0, that is

(4.2) r ≤ q + 1.

Suppose that q ≤ 1. Then r ≤ 2. Let λ = (ℓ1.ℓ2, . . . , ℓm). The definition of the
number r(λ) and the inequality r ≤ 2 imply that either ℓ1 = ℓ2 = · · · = ℓm = 1
or ℓ1 = 2 and ℓ2 = · · · = ℓm = 1. Since λ 6= (2, 1), this implies that q ≥ 2.
We have a contradiction with the inequality q ≤ 1. Therefore, q ≥ 2. This
implies that every word from the transversal Wn+1,m+1,λ1 has at least three
simple letters.

We need to verify that any identity of the kind u ≈ v with u, v ∈ Wn+1,m+1,λ1

holds in Wn,m,λ. It suffices to check that if u ∈ Wn+1,m+1,λ1 then the variety
Wn,m,λ satisfies the identity

(4.3) u ≈ xℓ11 · · · xℓtt xt+1 · · · xm+1.

At the rest part of the proof of this lemma, the words ‘a simple letter’ mean
‘a simple in u letter’. One can note that one of the following three claims hold:

1) the word u ends with a simple letter;
2) the word u starts with a simple letter;
3) the word u contains a subword of the kind xixj where xi and xj are

simple letters.

Indeed, if all these three claims fail then

u ≡ w1y1w2y2 · · ·wq+1yq+1wq+2

where y1, y2, . . . , yq+1 are simple letters, while w1, w2, . . . , wq+2 are non-empty
words such that the word w ≡ w1w2 · · ·wq+2 does not contain simple letters.

Then r = ℓ(w) =
q+2∑

i=1
ℓ(wi) ≥ q + 2, contradicting the inequality (4.2).

Now we consider three cases corresponding to the claims 1)–3).
Case 1: u ≡ wxi for some word w and some simple letter xi. The identity

(4.4) w ≈ xℓ11 · · · xℓtt xt+1 · · · xi−1xi+1 · · · xm+1



10 V. YU. SHAPRYNSKǏI AND B. M. VERNIKOV

has the partition λ, whence it holds in Wn,m,λ. Multiplying (4.4) by xi from
the right, we have the identity

(4.5) u ≈ xℓ11 · · · xℓtt xt+1 · · · xi−1xi+1 · · · xm+1xi

that also holds in Wn,m,λ. If i = m+ 1 then (4.5) coincides with (4.3) and we
are done. Let now i ≤ m. Put

j =

{

m− 1 whenever i = m,

m otherwise.

Since u contains at least three simple letters, the letter xj is simple. The
identity (4.5) has the form

(4.6) u ≈ axjxm+1xi

for some a ∈ F 1. Let xp be a letter with xp /∈ c(u). The identity

(4.7) axpxi ≈ axixp

has the partition λ, whence it holds in Wn,m,λ. Substituting xjxm+1 for xp
in (4.7), we obtain the identity

(4.8) axjxm+1xi ≈ axixjxm+1

that holds in Wn,m,λ. The identity

(4.9) axixj ≈ xℓ11 · · · xℓtt xt+1 · · · xm

has the partition λ, whence it holds in Wn,m,λ too. Multiplying (4.9) on xm+1

from the right, we obtain the identity

(4.10) axixjxm+1 ≈ xℓ11 · · · xℓtt xt+1 · · · xm+1

that holds in Wn,m,λ as well. Combining the identities (4.6), (4.8), and (4.10),
we obtain the identity (4.3).

Case 2: u ≡ xiw for some simple letter xi and some word w. The word
u contains at least three simple letters. Therefore, there is a simple letter
xj ∈ c(w). Thus, w ≡ axjb for some a, b ∈ F 1. The identity

(4.11) axjb ≈ abxj

has the partition λ, whence it holds in Wn,m,λ. Multiplying (4.11) on xi from
the left, we obtain the identity u ≈ xiabxj that also holds in Wn,m,λ. We come
to the situation considered in Case 1.

Case 3: u ≡ axixjb for some a, b ∈ F 1 and some simple letters xi and xj .
Let xp be a letter with xp /∈ c(u). The identity

(4.12) axpb ≈ abxp

has the partition λ, whence it holds inWn,m,λ. Substituting xixj for xp in (4.12),
we obtain the identity u ≈ abxixj that holds in Wn,m,λ. We come to the
situation considered in Case 1 again. �

Corollary 4.5. If λ ∈ Λ then Sλ ⊆ Wλk for any k ≥ 0.

Proof. If k ≤ s(λ) then the desired inclusion holds by the definition of the
variety Sλ. Let now k > s(λ). It is easy to see that s

(
λs(λ)

)
= 0. Now we may

apply Lemma 4.4 and conclude that Sλ ⊆ Wλs(λ) ⊆ Wλk . �
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Proposition 4.6. If λ ∈ Λ then the variety Sλ is greedy.

Proof. Suppose that µ ∈ Λ and the variety Sλ reduces the transversal Wµ, that
is Sλ satisfies some non-trivial identity u ≈ v with u, v ∈ Wµ. Lemma 4.2 implies

that λ � µ, that is µ = US

(
λk

)
for some S and k. Applying Corollary 4.5 and

Lemma 4.3, we have Sλ ⊆ Wλk ⊆ Wµ. Thus, if s, t ∈ Wµ then the identity
s ≈ t holds in Sλ. This means that Sλ collapses Wµ. We see that the variety
Sλ collapses any transversal it reduces, that is Sλ is greedy. �

Now we are well prepared to prove the ‘only if’ part of Proposition 2.4. Let an
overcommutative variety V satisfy the condition (vi) of Theorem 2.2. We need
to verify that V is greedy. It is evident that the variety SEM is greedy because

it does not reduce any transversal. Let now V =
k∧

i=1
Sλi

for some partitions

λ1, λ2, . . . , λk. By Proposition 4.6, the varieties Sλ1 , Sλ2 , . . . , Sλk
are greedy.

Proposition 2.1 implies now that all these varieties are neutral elements of the
lattice OC. It is well known that the set of all neutral elements of a lattice L
forms a sublattice of L (see [1, Theorem III.2.9], for instance). Therefore, V is a
neutral element of OC. Now we may apply Proposition 2.1 again and conclude
that V is greedy.

5. Proof of Proposition 2.4: sufficiency

Here we are going to verify that a greedy overcommutative variety satisfies
the condition (vi) of Theorem 2.2, thus completing the proof of Proposition 2.4
and therefore, of Theorem 2.2. We start with a few easy observations.

Lemma 5.1. If an overcommutative semigroup variety V reduces (in particular,

collapses) a transversal Wλ then V reduces transversals Wλk for all k ≥ 0.

Proof. The case k = 0 is obvious because Wλ0 = Wλ. Let now k > 0. Suppose
that V satisfies a non-trivial identity of the kind u ≈ v with u, v ∈ Wλ. Let
y1, . . . , yk be letters with y1, . . . , yk /∈ c(u). The identity uy1 · · · yk ≈ vy1 · · · yk
is non-trivial and holds in V because it follows from u ≈ v. Since

part(uy1 · · · yk ≈ vy1 · · · yk) = λk,

V reduces Wλk . �

Lemma 5.2. Let V be a greedy variety. If a non-trivial identity u ≈ v holds in

V and part(u ≈ v) = λ then V ⊆ Sλ.

Proof. By Lemma 5.1, V reduces transversals Wλk for all k = 0, 1, . . . , s(λ).
Being greedy, V collapses all these transversals. Therefore, V ⊆ Sλ. �

Corollary 5.3. Let λ, µ ∈ Λ. Then Sλ ⊆ Sµ if and only if λ � µ.

Proof. Necessity. Suppose that Sλ ⊆ Sµ. Let u ≈ v be an identity with part(u ≈
v) = µ. Then u ≈ v holds in Sµ, whence it holds in Sλ. Now Lemma 4.2 applies
with the conclusion that λ � µ.

Sufficiency. Let λ � µ and u ≈ v an identity with part(u ≈ v) = λ.
Since λ � µ, there is an identity s ≈ t such that u ≈ v implies s ≈ t and
part(s ≈ t) = µ. The variety Sλ satisfies the identity u ≈ v. Hence s ≈ t holds
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in Sλ as well. According to Proposition 4.6, the variety Sλ is greedy. Now
Lemma 5.2 succsessfully applies with the conclusion that Sλ ⊆ Sµ. �

Now we are ready to prove the ‘if’ part of Proposition 2.4. Let V be a greedy
variety and V 6= SEM. The last unequality means that V satisfies some non-
trivial identity u ≈ v. Put λ = part(u ≈ v). Lemma 5.2 shows that V ⊆ Sλ.
Thus, the set Γ = {λ ∈ Λ | V ⊆ Sλ} is non-empty. Put X =

∧

λ∈Γ

Sλ. Clearly,

V ⊆ X . Suppose that V 6= X . Then there is an identity u ≈ v that holds in V
but fails in X . Let µ = part(u ≈ v). By Lemma 5.2, V ⊆ Sµ. This means that
µ ∈ Γ, whence X ⊆ Sµ. Since Wµ satisfies u ≈ v and X ⊆ Sµ ⊆ Wµ, we have
that the identity u ≈ v holds in X . A contradiction shows that V = X .

Lemma 3.2 and Corollary 5.3 imply together that V =
∧

λ∈Γ′

Sλ where Γ′ is the

set of all minimal elements of the partially ordered set 〈Γ;�〉. Since Γ′ forms
an anti-chain in 〈Λ;�〉, Lemma 3.4 implies that the set Γ′ is finite. Thus, V
satisfies the condition (vi) of Theorem 2.2.

Proposition 2.4 and Theorem 2.2 are proved. �

6. Additional remarks

Here we are going to show that the description of the varieties under consid-
eration given by Theorem 2.2 may not be improved, in a sense. Theorem 2.2
shows that the varieties of the kind Sλ play the crucial role in the description
of varieties we consider in this article. Recall that the variety Sλ is defined as
the intersection of the varieties Wλi where i runs over the set {0, 1, . . . , s(λ)}.
A natural question arises, whether or not the number s(λ) may be changed on
some lesser number here.

For any λ ∈ Λ and k ∈ {0, 1, . . . , s(λ)}, we put

Sk
λ =

k∧

i=0

Wλi .

In particular, S0
λ = Wλ and S

s(λ)
λ = Sλ. The crucial property of the variety

Sλ is given by Proposition 4.6: this variety is greedy. The following statement
together with Lemma 5.1 show that varieties Sk

λ with k < s(λ) does not have
this property. Thus, the question posed in the previous paragraph is answered
in negative.

Proposition 6.1. Let λ ∈ Λ, s(λ) > 0, and 0 ≤ k < s(λ). Then the variety

Sk
λ does not collapse the transversals Wλk+1, Wλk+2 , . . . , Wλs(λ).

Proof. Let i ∈ {k+1, . . . , s(λ)}. Suppose that Sk
λ collapses the transversal Wλi .

Further considerations are divided into two cases.
Case 1: λ 6= (2, 1). The definition of the number s(λ) and the inequality

s(λ) > 0 imply that s(λ) = r(λ) − q(λ) − 1 here. Since s(λ) ≥ i, we have
r(λ)− q(λ)− 1 ≥ i. Evident equalities r

(
λi
)
= r(λ) and q

(
λi
)
= q(λ) + i then

imply that r
(
λi
)
≥ q

(
λi
)
+ 1. Hence the transversal Wλi contains a word u of

the kind
u ≡ w1y1w2y2 · · ·wq+iyq+iwq+i+1
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where y1, y2, . . . , yq+i are simple in u letters, while w1, w2, . . . , wq+i+1 are non-
empty words such that the word w1w2 · · ·wq+i+1 does not contain simple in u

letters. Let v ∈ Wλi and v 6≡ u. Since Sk
λ collapses Wλi , the identity u ≈ v

holds in Sk
λ. Therefore, this identity follows from the identity system

Σ = {g ≈ h | there is j ∈ {0, 1, . . . , k} with g, h ∈ Wλj}.

Let (4.1) be a deduction of u ≈ v from Σ. We have u ≡ aζ(s)b and w1 ≡ aζ(t)b
for some homomorphism ζ on F , some a, b ∈ F 1, and some s, t ∈ Wλj where
j ∈ {0, 1, . . . , k}. Furthermore,

(6.1) r(part(s)) = r
(
λj
)
= r

(
λi
)
= r(part(u)) = r(part(aζ(s)b)).

On the other hand, it is evident that

(6.2) r(part(s)) ≤ r(part(ζ(s))) ≤ r(part(aζ(s)b)).

Combining (6.1) and (6.2), we have

(6.3) r(part(s)) = r(part(ζ(s))) = r(part(aζ(s)b)).

This implies that the subword ζ(s) of the word aζ(s)b contains all occurrences
of non-simple in aζ(s)b letters, whence all letters from c(ab) are simple in u. But
the word aζ(s)b ≡ u starts and ends with non-simple in u letters. Therefore,
the words a and b are empty. Thus, u ≡ ζ(s). If either there is a non-simple
in s letter x with ℓ(ζ(x)) > 1 or there is a simple in s letter y such that the
word ζ(y) contains some non-simple in u letter then r(part(ζ(s))) > r(part(s)),
contradicting (6.3). Hence ζ maps every non-simple in s letter to a letter and
maps every simple in s letter to a word consisting of simple letters. If y is a
simple in s letter then ζ(y) is a subword of u. But u does not contain subwords
consisting of simple letters except subwords of length 1, that is letters. Thus,
ζ maps a simple in s letter to a simple in ζ(s) ≡ u letter. We conclude that
ℓ(u) = ℓ(ζ(s)) = ℓ(s). But ℓ(s) = n + j and ℓ(u) = n + i where n = ℓ(λ).
Therefore, j = i. But this is impossible because i ≥ k + 1, while j ≤ k.

Case 2: λ = (2, 1). Here r(λ) = 2, q(λ) = 1, and δ = 0, whence s(λ) = 1.
Therefore, k = 0 and i = 1. This means that Sk

λ = Wλ and λi = (2, 1, 1). Let
u ≡ x2yz and v ≡ x2zy. Suppose that the identity u ≈ v holds in Wλ. Then it
follows from the identity system

Σ = {x2y ≈ xyx ≈ yx2}.

Let (4.1) be a deduction of u ≈ v from Σ. Then there is j ∈ {0, 1, . . . , ℓ} such
that the first occurrence of z in the word wj precedes the first occurrence of y
in wj . Let j be the least number with such a property. It is evident that j > 0.
Thus, the following holds:

wj−1 ∈ {x2yz, xyxz, xyzx, yx2z, yxzx, yzx2},(6.4)

wj ∈ {x2zy, xzxy, xzyx, zx2y, zxyx, zyx2}.(6.5)

Furthermore, wj−1 ≡ aζ(s)b and wj ≡ aζ(t)b for some homomorphism ζ on F ,
some a, b ∈ F 1, and some s, t ∈ {x2y, xyx, yx2}. Repeating mutatis mutandi
arguments from Case 1), we obtain that r(part(wj−1)) = r(part(wj)) = 2
and deduct from these equalities that x /∈ c(ab), ζ(x) is a letter, and ζ(y) ∈
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{y, z, yz, zy}. If ζ(x) ≡ e then e is a non-simple in wj−1 letter. In view of (6.4),
ζ(x) ≡ x.

If ζ(y) ≡ yz then the word wj contains the subword yz, contradicting (6.5).
Analogously, if ζ(y) ≡ zy then the word wj−1 contains the subword zy, contra-
dicting (6.4).

Suppose now that ζ(y) ≡ y. Then ζ(s) ≡ s and ζ(t) ≡ t. Since ζ(s) is a
subword in wj−1, this means that one of the words x2y, xyx or yx2 is a subword
in wj−1. In view of (6.4), this means that wj−1 coincides with one of the words
x2yz, xyxz or yx2z. Thus, the word a is empty and therefore, wj ≡ ζ(t)b ≡ tb.
Since z /∈ c(t), we have that the first occurrence of y in wj precedes the first
occurrence of z in wj. But this contradicts the choice of the number j.

Finally, let ζ(y) ≡ z. Then ζ(s) ∈ {x2z, xzx, zx2}, whence wj−1 coincides
with one of the words ax2zb, axzxb or azx2b. In view of (6.4), this means that
wj−1 ∈ {yx2z, yxzx, yzx2}. Therefore, a ≡ y. Thus, the word wj starts with
the letter y. As in the previous paragraph, we have that the first occurrence of
y in wj precedes the first occurrence of z in wj that contradicts the choice of j.

We prove that the variety Wλ = Sk
λ does not satisfy the identity x2yz ≈ x2zy.

Since part(x2yz ≈ x2zy) = (2, 1, 1) = λi, we have that Sk
λ does not collapse the

transversal Wλi . �

One can return to the definition of the variety Sλ. It may be written in the
form

(6.6) Sλ =
∧

µ∈Γ

Wµ

where Γ = {λk | k = 0, 1, . . . , s(λ)}. The following assertion shows that the
set {λk | k = 0, 1, . . . , s(λ)} is the least set of partitions Γ such that the equal-
ity (6.6) holds.

Corollary 6.2. If the equality (6.6) holds for some Γ ⊆ Λ then λk ∈ Γ for all

k = 0, 1, . . . , s(λ).

Proof. Suppose that λk /∈ Γ for some k ∈ {0, 1, . . . , s(λ)}. Let u, v ∈ Wλk .
The definition of the variety Sλ implies that the identity u ≈ v holds in Sλ.
Therefore, this identity follows from the identity system

Σ = {g ≈ h | there is µ ∈ Γ such that g, h ∈ Wµ}.

As usual, let (4.1) be a deduction of u ≈ v from Σ. Let i ∈ {0, 1, . . . , ℓ − 1}.
Then the identity wi ≈ wi+1 follows from an identity of the kind s ≈ t where
s, t ∈ Wµ for some µ ∈ Γ. The identity s ≈ t holds in the variety Sµ. Therefore,
u ≈ v holds in Sµ too. Then Lemma 4.2 implies that µ � part(u ≈ v) =

λk. Furthemore, the identity s ≈ t holds in the variety Sλ because Sλ ⊆ Wµ.
Applying Lemma 4.2 again, we have λ � µ. Therefore, µ = US

(
λj
)
and

λk = UT

(
µq

)
for some finite (may be empty) sets of partitions S and T and

some non-negative integers j and q.
Let n(λ) = n. Then n(µ) = n + j, while n

(
λk

)
equals both n + k (that

is evident) and n + j + q (because n
(
λk

)
= n(µ) + q). Therefore, n + k =

n + j + q, whence q = k − j. Thus, µ = US

(
λj
)
and λk = UT

(
µk−j

)
. Hence
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λk = US∪T

(
λk

)
and therefore, S = T = ∅. In particular, this means that

µ = U∅

(
λj
)
= λj . We see that λj = µ � λk, whence j ≤ k. But j 6= k because

λk /∈ Γ, while λj = µ ∈ Γ. Hence j < k. Besides that, the equality µ = λj

implies that the identity wi ≈ wi+1 holds in the variety Wλj . Since j ≤ k − 1,
we have Sk−1

λ ⊆ Wλj . Thus, wi ≈ wi+1 holds in Sk−1
λ . This is the case for all

i = 0, 1, . . . , ℓ − 1. Therefore, the identity u ≈ v holds in Sk−1
λ too. This is

valid for all u, v ∈ Wλk . Hence the variety Sk−1
λ collapses the transversal Wλk ,

contradicting Proposition 6.1. �

7. Open problems

Recall that an element x of a lattice L is called modular if

∀y, z ∈ L : y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y,

and upper-modular if

∀y, z ∈ L : y ≤ x −→ x ∧ (y ∨ z) = (x ∧ z) ∨ y.

Lower-modular elements are defined dually to upper-modular ones.

Problem 7.1. Describe

a) modular;

b) upper-modular;

c) lower-modular

elements of the lattice OC.

As we have already mentioned in Section 1, neutral elements of the lattice
SEM are completely determined in [15], while distributive elements of this
lattice are completely described in [12]. It is interesting to note that Proposi-
tion 2.1 plays an important role in the proof of the result of [12].

Problem 7.2. Describe

a) codistributive;

b) standard;

c) costandard

elements of the lattice SEM.

Some particular results concerning Problem 7.2a) are obtained in [11]. The
following two examples show that, in contrast with the overcommutative case,
the lattice SEM contains distributive but not codistributive elements and codis-
tributive but not distributive ones. In particular, there are [co]distributive but
not neutral elements of SEM.

Example 7.3. The variety N = var{x2y = xyx = yx2 = 0} is a distributive
element of the lattice SEM by [12, Theorem 1.1]. But this variety is not a
codistributive (and moreover not a neutral) element of SEM by [11, Theo-
rem 1.1].

Example 7.4. The varieties Ap = var{xpy = y, xy = yx} with any prime p,
LZ = var{xy = x}, and RZ = var{xy = y} are codistributive elements of the
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lattice SEM. This follows from the well known facts that these varieties are
atoms of SEM and SEM satisfies the condition

∀x, y, z : x ∧ z = y ∧ z = 0 −→ (x ∨ y) ∧ z = 0

(see [4, Section 1], for instance). But Ap, LZ, and RZ are not distributive (and
moreover not neutral) elements of SEM by [12, Theorem 1.1].
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