PR-34

АНАЛИЗ ИОННЫХ РАВНОВЕСИЙ И ХИМИЧЕСКОЕ ОСАЖДЕНИЕ ПЛЁНКИ Bi_2Se_3 В СИСТЕМЕ « $Bi(NO_3)_3$ – TEA – NH_4OH – Na_2SeSO_3 » Лихачев М. Д.1, Поздин А. B.1, Марков В. $\Phi.1^2$

¹Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002, Россия, Екатеринбург, ул. Мира, 19

Селенид висмута (Bi_2Se_3) — полупроводниковое соединение n-типа, относящееся к группе A^5B^6 . Соединение обладает ромбоэдрической фазой пр. гр. R-3m и шириной запрещенной зоны $0,3-0,335\,$ эB, что обеспечивает полуметаллические свойства и относительно высокую проводимость.

Настоящая работа посвящена анализу ионных равновесий и химическому осаждению пленки Bi_2Se_3 в системе « $Bi(NO_3)_3$ – TEA – NH_4OH – Na_2SeSO_3 ». Оценка концентрационной области образования в координатах рСн – рН представлена на рис. 1.

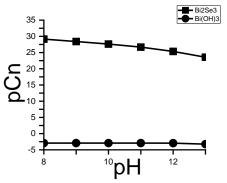


Рисунок 1 — Граничные условия образования Bi_2Se_3 (1) и $Bi(OH)_3$ (2) в системе « $Bi(NO_3)_3$ - ТЭА - $NH_4OH - Na_2SeSO_3$ »

Расчеты показали, что благоприятная область формирования плёнки при рН 10–12, так как гидролиз селеносульфата натрия протекает при данных значениях.

Химическое осаждение пленки Bi_2Se_3 проводили на обезжиренной ситалловой подложке, толщина которой составила 600 нм. Микрофотография, полученная с помощью растрового электронного микроскопа JEOL JSM-5900 LV, приведена на рис. 2

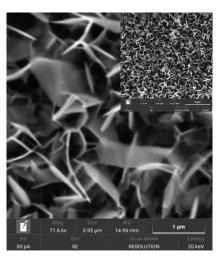


Рисунок 2 — Микрофотография пленки Bi_2Se_3 . На вставке — изображение поверхности пленки с увеличением $10\ 000$ крат.

² Уральский институт ГПС МЧС России, 620022, Россия, Екатеринбург, ул. Мира, 28 E-mail: matveilihachev123456789@gmail.com