МЕТОД РАСЧЁТА И ОЦЕНКИ ДОЗЫ ВНУТРЕННЕГО ОБЛУЧЕНИЯ РАДИОФАРМПРЕПАРАТОМ "ФТОР-18-ДЕЗОКСИГЛЮКОЗА" С ИСПОЛЬЗОВАНИЕМ ПЭТ/КТ РЕКОНСТРУКЦИЙ

<u>Барабанов Д.Д.</u> 12* ,Зельский И.А. 2

1) Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия

²⁾ «Центр ядерной медицины г. Екатеринбург» ООО «ПЭТ-Технолоджи», г. Екатеринбург, Россия

*E-mail: <u>barabanovdd@yandex.ru</u>

METHOD OF INTERNAL EXPOSURE DOSE EVALUATION AFTER THE RADIOPHARMACEUTICAL "FLUORINE-18-DESOXYGLUCOSE" USING PET/CT RECONSTRUCTIONS

Barabanov D.D. 12*Zelskiy I.A.2

¹⁾ Ural Federal University, Yekaterinburg, Russia ²⁾ Nuclear medicine center of Yekaterinburg, PET-Technology, Yekaterinburg, Russia

Annotation. Positron emission tomography combined with multislice computed tomography is a radionuclide tomographic method of the internal organs researching. In addition to its diagnostic application, PET/CT method could be used for accurate determination of internal radiation exposure dose.

ПЭТ/КТ (Позитронная эмиссионная томография совмещённая с мультиспиральной компьютерной томографией) - радионуклидный томографический метод исследования внутренних органов, ипользуется преимущественно при диагностике онкологических заболеваний. Метод основан на регистрации пары гамма-квантов, возникающих при аннигиляции позитронов с электронами. Позитроны возникают при позитронном бета-распаде радионуклида, входящего в состав радиофармпрепарата, который вводится в организм перед исследованием

Результат стандартного ПЭТ/КТ сканирования с использованием радиофармпрепарата(РФП) 18-Фтордезоксиглюкоза(ФДГ) представлен на рисунке 1.

На настоящее время не разработаны численные методы по точному определению эффективной дозы внутреннего облучения при внутривенном введении диагностических РФП. В медицинских подразделениях РФ при использовании 18-Фтордезоксиглюкозы используются коэффициенты перехода от активности к эффективной дозе, представленные в МУ 2.6.1.3151-13. Коэффициенты перехода совпадают с европейскими, краткая выдержка приведена в таблице.

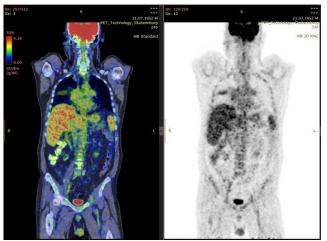


Рис. 1. (слева) – ПЭТ/КТ визуализация, (справа) - ПЭТ визуализация

Коэффициенты перехода от активности РФП в органе (МБк) к поглощённой дозе (мГр) в зависимости от возраста

mGy/MBk	Adult	15	10	5	1
Adrenals	0.012	0.015	0.024	0.038	0.072
Bladder	0.16	0.21	0.28	0.32	0.59
Bone surfaces	0.011	0.014	0.022	0.035	0.066
Brain	0.028	0.028	0.030	0.034	0.048
Breast	0.0086	0.011	0.018	0.029	0.056

Приведённые коэффициенты не учитывают индивидуальных особенностей организма пациента, таких как индекс массы тела, уровня сахара в крови, патологий внутренних органов, эмоциональное состояние. Расчёт эффективной дозы внутреннего облучения численными методами с помощью модели точечных источников, распределённых по всему телу пациента показал, что для одного и того же пациента 2 исследования, проведённые в течение года при одинаковых условиях, создают различную эффективную дозу облучения внутренних органов. Расхождение может достигать порядка 30%.

- 1. Яськова Е.К., Степаненко В.Ф., Радиация и риск, том 19, 50 (2010).
- 2. Козлов В.Ф., Справочник по радиационной безопасности, 87 (1999)
- 3. Беспалов В.И., Взаимодействие ионизирующих излучений с веществом, Издательство Томского политехнического университета (2008).