РАССЕЯНИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ПОРОШКОВЫХ ДИЭЛЕКТРИЧЕСКИХ СРЕДАХ С РАЗЛИЧНЫМ ПОКАЗАТЕЛЕМ ПРЕЛОМЛЕНИЯ

<u>Тихонов Е.В.</u>*, Лисенков В.В., Платонов В.В., Осипов В.В.

ИЭФ УрО РАН, г. Екатеринбург, Россия

*E-mail: <u>tikhonov@iep.uran.ru</u>

THE LASER RADIATION SCATTERING IN POWDER DIELECTRIC MEDIA WITH DIFFERENT REFRACTIVE INDEX

<u>Tikhonov E.V.</u>, Lisenkov V.V., Platonov V.V., Osipov V.V.

IEP UB RAS, Yekaterinburg, Russia

The results of the investigation of interaction of radiation of a fiber laser with transparent dielectric powder media are reported. The main characteristics of the local maximum of radiation as a potential source of material destruction are given.

Метод лазерного испарения сегодня активно применяется для получения нанопорошков оксидов, используемых для синтеза керамик. В ИЭФ УрО РАН нанопорошки получают при помощи импульсно-периодического CO_2 -лазера (λ =10,6 мкм) и непрерывных волоконных иттербиевых лазеров (λ =1,07 мкм). С помощью них были получены порошки Y_2O_3 , Al_2O_3 , YSZ и др. Эти материалы на λ =10,6мкм непрозрачны, но на λ =1,07мкм имеют высокую прозрачность. В последнем случае поглощение излучения зависит от концентрации в материале поглощающих дефектов. Важным фактором является и рассеивание лазерного излучения, зависящее от коэффициента преломления материала п. Например, CaF_2 и 1%Nd: Y_2O_3 имеют близкий показатель поглощения (\sim 1-3·10⁻³ см⁻¹), но разный п (1,43 для CaF_2 и 1,90 для Y_2O_3). При одинаковой мощности излучения волоконного лазера 600 Вт производительность получения нанопорошка 1%Nd: Y_2O_3 была 23г/час, а мишень из CaF_2 даже не испарялась.

В докладе приводятся результаты численного моделирования рассеяния излучения волоконного лазера в прозрачном прессованном порошке с размерами частиц $0,5\div4$ мкм при плотности упаковки ~55%, и на одиночной частице. Расчёт производился для материалов с различным коэффициентом преломления n: MgF₂ (1,38), CaF₂ (1,43), Al₂O₃ (1,75), Y₂O₃ (1,90), YSZ (2,12). Интенсивность падающего лазерного излучения составляла 0,46MBT/см².

Рассчитанное распределение поля, как для пористой мишени, так и для одиночной частицы имеет сложную структуру с локальными максимумами интенсивности излучения I, что обусловлено интерференцией излучения, его отражением и преломлением на границах частиц. Интенсивность излучения в этих максимумах зависит от диаметра частиц, их коэффициента преломления n и длины волны излучения λ . Например, для Y_2O_3 при $\lambda=1,07$ мкм увеличение

диаметра частицы с 1 мкм до 3 мкм приводит к периодическим скачкам I от $2~{\rm MBT/cm^2}$ до $10~{\rm MBT/cm^2}$. Максимальная величина I в локальных максимумах с ростом показателя преломления увеличивается. Например, для пористой мишени из ${\rm CaF_2}$ (n=1,43) I=6 ${\rm MBT/cm^2}$, а для YSZ (n=2,12) I=31 ${\rm MBT/cm^2}$. При этом характерная глубина проникновения излучения вглубь ${\rm CaF_2}$ составляет 17 мкм, а для YSZ из-за большего рассеивания — 11 мкм.

В прессованной мишени локальные максимумы могут приходиться на промежуток между частицами, на их поверхность или объём. Высокая интенсивность излучения в локальном максимуме способствует лучевому повреждению таких частиц. Полученные результаты позволяют объяснить, почему прессованный Y_2O_3 под воздействием 600Вт излучения волоконного лазера испаряется, а CaF_2 нет при близких теплофизических характеристиках.

Работа выполнена в рамках темы государственного задания №0389-2014-0027, а также при частичной поддержке грантом РФФИ № 17-08-00064 A.

ИССЛЕДОВАНИЕ ВЫТЕСНЕНИЕ НЕФТИ ИЗ ПОРИСТОЙ СРЕДЫ, С ИСПОЛЬЗОВАНИЕМ ГРАФЕНОВОЙ СУСПЕНЗИИ

Пахаруков Ю.В., Шабиев Ф.К., <u>Сафаргалиев Р.Ф.</u>*

Тюменский индустриальный университет, г. Тюмень, Россия *E-mail: ruslan.safargaliev1993@mail.ru

A STUDY OF OIL DISPLACEMENT FROM THE POROUS MEDIUM USING THE GRAPHENE SUSPENSION

Pakharukov Y. V., Shabiev F. K., Safargaliev R. F.*

¹⁾Industrial University of Tyumen, Tyumen, Russia ²⁾University of Tyumen, Tyumen, Russia

Discovered that the water suspension of graphite planar nanostructures at the interface oil-water, has the displacing capacity. In the experiment using the cell of hele-Show that the process of displacement at the interface, do not form viscous fingers, as a result of the instability at the interface oil – water.

Известно, что большая часть нефтяных месторождений переходит на заключительную стадию разработки [1]. Для полноты вытеснения нефти из пласта применяют физико-химических методы воздействия на пласт совместно с его заводнением [2]. Считается, что наиболее эффективным является микроэмульсионное заводнение, но заводняющий агент должен обладать необходимой подвижностью и низким поверхностным натяжением с нефтью. В этом случае граница раздела нефть – вода будет устойчивой, и не будут образовываться вязкие пальцы. Но микроэмульсии чувствительны к агрессивной среде пласта. В