Кинева Д.А., Долгий Ю.Ф., Сесекин А.Н., Ташлыков О.Л.

ОПТИМАЛЬНЫЙ ПО ВРЕМЕНИ АЛГОРИТМ НАВЕДЕНИЯ МЕХАНИЗМА ПЕРЕГРУЗКИ ЯДЕРНОГО ТОПЛИВА В РЕАКТОРАХ НА БЫСТРЫХ НЕЙТРОНАХ

Аннотация. Предложен алгоритм оптимального по быстродействию механизма перегрузки ядерного топлива реактора на быстрых нейтронах БН-800. Применение такого алгоритма управления приведет к сокращению времени остановки реактора на перегрузку ядерного топлива.

Ключевые слова: оптимальное управление, механизм перегрузки, реактор БН-800.

Abstract. An algorithm for the speed-optimal mechanism for reloading the nuclear fuel of the BN-800 fast neutron reactor is proposed. The use of such a control algorithm will lead to a reduction in the shutdown time of the reactor for the refueling of nuclear fuel.

Keywords: optimal control, refueling mechanism, BN-800 reactor.

Введение

Периодически в связи с выгоранием топлива в ядерных реакторах на АЭС осуществляется перегрузка ядерного топлива. В связи с тем, что на время перегрузки реактор останавливается (за исключением реакторов типа РБМК-1000 [1]), это ведет к недовыработке электроэнергии на АЭС. Поэтому необходимо сокращать время на перегрузки топлива. Задача минимизации суммарного состоит времени перегрузки в определении очередности перемещения тепловыделяющих сборок (ТВС). В качестве вспомогательной задачи возникает задача о минимизации времени перемещения захвата механизма перегрузки ТВС из одного заданного положения в другое. Используя результат последней задачи, мы можем определить для заданной очередности перемещений ТВС суммарное время на перегрузку ядерного топлива (оптимизируемый функционал) [2]. Это, в свою очередь, позволит решить маршрутную задачу оптимизации суммарного времени перегрузки ТВС.

Корпус реакторов на быстрых нейтронах представляет собой цилиндр, изготовленный из специальных нержавеющих сталей перлитного и аустенитного классов. Теплоотвод обеспечивается благодаря высокоэффективному теплоносителю – жидкому натрию. На горловине корпуса реактора установлен механизм перегрузки ядерного топлива. Чтобы выгрузить выгоревшую тепловыделяющую сборку из реактора, захват перегрузочной машины должен переместиться в точку с координатами, соответствующими местоположению ТВС. Затем захват опускается и зацепляет ТВС. После этого ТВС поднимается и перемещается в заданное место В бассейн выдержки или на новое место). В обратном порядке происходит загрузка свежей ТВС. Время, затраченное на поднимание и опускание ТВС, зацепление и расцепление захвата можно не учитывать, так как оно в рассматриваемой задаче не минимизируется. Поэтому задачу можно рассматривать как плоскую задачу.

Особенность механизмов перегрузки ядерного топлива в реакторах на быстрых нейтронах БН-600 и БН-800 состоит в том, наведение механизма перегрузки на координаты топливной сборки, его перемещение в реакторе осуществляется в результате взаимного вращения двух (БН-600) или трех (БН-800) цилиндров, называемых поворотными пробками, расположенными эксцентрично [3]. Заметим, что, например, в реакторе ВВЭР-1000 операция перегрузки топлива осуществляется с помощью перегрузочной машины, представляющей собой напольный мостовой кран [1].

В работе построена математическая модель механизма перегрузки ядерного топлива, состоящего из трех вращающихся пробок, которая несколько отличается от математической модели, рассматриваемой в [4]. Предложенная модель реализована с помощью уравнений Лагранжа второго рода. Эта модель является существенно нелинейной и трудна для исследования. В связи с этим в работе [4] был рассмотрен вариант задачи, когда поворотные пробки вращаются последовательно. Для оптимизации поворота одной пробки использовался результат из [4]. Для одновременного разворота двух пробок использовался результат из [5]. В итоге задача была сведена к задаче нелинейного программирования с тремя переменными и геометрическими связями. В этой работе рассматривается случай, когда одновременно могут вращаться большая и средняя пробки. Построен оптимальный алгоритм управления. Заметим, что рассматриваемая задача является вспомогательной для задачи определения очередности перестановки ТВС, которая является маршрутной задачей [2] с нестандартными ограничениями.

Математическая модель системы трех пробок с эксцентриситетами

На рис. 1 приведена схема трех поворотных пробок реактора БН-800. Здесь точка O_1 (центр большой пробки) неподвижна. Система координат $O_1 xy$ неподвижна. O_2 – точка, неподвижная относительно первой пробки (центр второй пробки), $O_1 x_1 y_1$ – система координат, жёстко связанная с первой (большой) пробкой, φ_1 – угол поворота её относительно неподвижной системы координат, $O_2 x_2 y_2$ – система, жёстко связанная со второй (средней) пробкой, φ_2 – угол поворота её относительно подвижной системы $O_1 x_1 y_1$, O_3 – точка, неподвижная относительно второй пробки, $O_3 x_3 y_3$ – система координат, жёстко связанная с

475

третьей (малой) пробкой, φ_3 – угол поворота её относительно подвижной системы $O_2x_2y_2$ (см. рис. 1), C_2 , C_3 – центры масс большой, средней и малой пробок. На пробки действуют управляющие моменты u_1 , u_2 и u_3 . Движение механизма описывается в горизонтальной плоскости. Виртуальная работа моментов, $\delta A = u_1 \delta \varphi_1 + u_2 \delta \varphi_2 + u_3 \delta \varphi_3$ то есть обобщённые силы $Q_1 = u_1, Q_2 = u_2, Q_3 = u_3$.

Рисунок 2 - Схема поворотных пробок

Кинетическая энергия механизма определяется суммой кинетических энергий трех пробок: $T = T_1 + T_2 + T_3$. Кинетическая энергия большой пробки есть

$$T_1 = \frac{1}{2} J_1 \dot{\varphi}_1^2,$$

где J_1 – осевой момент инерции большой пробки относительно вертикальной оси, проходящей через точку O_1 . Кинетическая энергия средней пробки определяется формулой

$$T_{2} = \frac{1}{2}m_{2}v_{0_{2}}^{2} + \frac{1}{2}J_{2}\omega_{2}^{2} + m_{2}(\overrightarrow{v_{0_{2}}}, \overrightarrow{v_{c_{2}}}),$$

где m_2 – масса средней пробки, J_2 – осевой момент инерции средней пробки относительно вертикальной оси, проходящей через точку O_2 , \vec{v}'_{c_2} – относительная скорость точки C_2 в системе координат, движущейся поступательно со скоростью \vec{v}_{0_2} относительно неподвижной системы координат. В результате имеем

$$T_2 = \frac{1}{2}m_2l_2^2\dot{\varphi}_1^2 + \frac{1}{2}J_2(\dot{\varphi}_1 + \dot{\varphi}_2)^2 + m_2l_2a_2\dot{\varphi}_1(\dot{\varphi}_1 + \dot{\varphi}_2)\cos\varphi_2$$

где $l_2 = |\overrightarrow{O_1 O_2}|, a_2 = |\overrightarrow{O_2 C_2}|$. Кинетическая энергия малой пробки определяется формулой

$$T_{3} = \frac{1}{2}J_{3}(\dot{\varphi}_{1} + \dot{\varphi}_{2} + \dot{\varphi}_{3})^{2} + \frac{1}{2}m_{3}(l_{2}^{2}\dot{\varphi}_{1}^{2} + l_{3}^{2}(\dot{\varphi}_{1} + \dot{\varphi}_{2})^{2} + 2l_{2}l_{3}\dot{\varphi}_{1}(\dot{\varphi}_{1} + \dot{\varphi}_{2})\cos(\varphi_{2} + \alpha)) + m_{3}a_{3}(\dot{\varphi}_{1} + \dot{\varphi}_{2} + \dot{\varphi}_{3})(l_{2}\dot{\varphi}_{1}\cos(\varphi_{2} + \varphi_{3}) + l_{3}(\dot{\varphi}_{1} + \dot{\varphi}_{2})\cos(\varphi_{3} - \alpha)),$$

где m_3 – масса малой пробки, J_3 – осевой момент инерции малой пробки относительно вертикальной оси, проходящей через точку O_3 , $l_3 = |\overrightarrow{O_2O_3}|$, $a_3 = |\overrightarrow{O_3C_3}|$, $\alpha = LC_2O_2O_3$.

Суммарная кинетическая энергия механизма будет следующей

$$T = \frac{1}{2} \left(J_1 + (m_2 + m_3) l_2^2 \right) \dot{\phi}_1^2 + \frac{1}{2} \left(J_2 + m_3 l_3^2 \right) (\dot{\phi}_1 + \dot{\phi}_2)^2 + \frac{1}{2} J_3 (\dot{\phi}_1 + \dot{\phi}_2 + \dot{\phi}_3)^2 + (m_2 l_2 a_2 \cos \varphi_2 + m_3 l_2 l_3 \cos(\alpha + \varphi_2)) \dot{\phi}_1 (\dot{\phi}_1 + \dot{\phi}_2) + m_3 l_2 a_3 \cos(\varphi_2 + \varphi_3) \dot{\phi}_1 (\dot{\phi}_1 + \dot{\phi}_2 + \dot{\phi}_3) + m_3 l_3 a_3 (\dot{\phi}_1 + \dot{\phi}_2) (\dot{\phi}_1 + \dot{\phi}_2 + \dot{\phi}_3) \cos(\varphi_3 - \alpha).$$
(1)

С помощью (1) составим уравнения Лагранжа 2 рода [6] $J_1\ddot{\varphi}_1 + J_2(\ddot{\varphi}_1 + \ddot{\varphi}_2) + J_3(\ddot{\varphi}_1 + \ddot{\varphi}_2 + \ddot{\varphi}_3) + m_2[l_2^{\ 2}\ddot{\varphi}_1 + l_2a_2(\cos\varphi_2(2\ddot{\varphi}_1 + \ddot{\varphi}_2) - \sin\varphi_2\dot{\varphi}_2(2\dot{\varphi}_1 + \dot{\varphi}_2))] + m_3[l_2^{\ 2}\ddot{\varphi}_1 + l_3^{\ 2}(\ddot{\varphi}_1 + \ddot{\varphi}_2) + l_2l_3(\cos(\varphi_2 + \varphi_3)(2\ddot{\varphi}_1 + \dot{\varphi}_2)) + l_2a_3(\cos(\varphi_2 + \varphi_3)(2\ddot{\varphi}_1 + 2\ddot{\varphi}_2 + \ddot{\varphi}_3)) - \sin(\varphi_2 + \varphi_3)(2\dot{\varphi}_1 + \dot{\varphi}_2 + \dot{\varphi}_3)) + l_3a_3(\cos(\varphi_3 - \alpha)(2\ddot{\varphi}_1 + 2\ddot{\varphi}_2 + \ddot{\varphi}_3) - \sin(\varphi_3 - \alpha)\dot{\varphi}_3(2\dot{\varphi}_1 + 2\dot{\varphi}_2 + \dot{\varphi}_3))] = u_1 \qquad (2)$

$$J_{2}(\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) + J_{3}(\ddot{\varphi}_{1} + \ddot{\varphi}_{2} + \ddot{\varphi}_{3}) + m_{2}l_{2}a_{2}(\cos\varphi_{2}\ddot{\varphi}_{1} + \sin\varphi_{2}\dot{\varphi}_{1}^{2}) + m_{3}[l_{3}^{2}(\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) + l_{2}l_{3}(\cos(\varphi_{2} + \alpha)\ddot{\varphi}_{1} + \sin(\varphi_{2} + \alpha)\dot{\varphi}_{1}^{2}) + l_{2}a_{3}(\cos(\varphi_{2} + \varphi_{3})\ddot{\varphi}_{1} + \sin(\varphi_{2} + \varphi_{3})\dot{\varphi}_{1}^{2}) + l_{3}a_{3}(\cos(\varphi_{3} - \alpha)(2\ddot{\varphi}_{1} + 2\ddot{\varphi}_{2} + \ddot{\varphi}_{3}) - \sin(\varphi_{3} - \alpha)\dot{\varphi}_{3}(2\dot{\varphi}_{1} + 2\dot{\varphi}_{2} + \dot{\varphi}_{3})] = u_{2}, \qquad (3)$$

$$J_{3}(\ddot{\varphi}_{1} + \ddot{\varphi}_{2} + \ddot{\varphi}_{3}) + m_{3}[l_{2}a_{3}(\cos(\varphi_{2} + \varphi_{3})\ddot{\varphi}_{1} + \sin(\varphi_{2} + \varphi_{3})\dot{\varphi}_{1}^{2}) + l_{3}a_{3}(\cos(\varphi_{3} - \alpha)(\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) + \sin(\varphi_{3} - \alpha)(\dot{\varphi}_{1} + \dot{\varphi}_{2})^{2}] = u_{3}$$
(4)

Математическая модель вращения большой и средней пробок

Операция перегрузки будет осуществляться следующим образом: сначала будут одновременно разворачиваться большая и средняя пробки (малая пробка при этом замораживается, т.е. φ_3 =const).

Согласно (2) и (3)

$$J_{1}\ddot{\varphi}_{1} + J_{2}(\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) + J_{3}(\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) + m_{2}[l_{2}^{2}\ddot{\varphi}_{1} + l_{2}a_{2}(\cos\varphi_{2}(2\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) - \sin\varphi_{2}\dot{\varphi}_{2}(2\dot{\varphi}_{1} + \dot{\varphi}_{2}))] + m_{3}[l_{2}^{2}\ddot{\varphi}_{1} + l_{3}^{2}(\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) + l_{2}l_{3}(\cos\varphi_{2} + \alpha)(2\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) - \sin(\varphi_{2} + \alpha)\dot{\varphi}_{2}(2\dot{\varphi}_{1} + \dot{\varphi}_{2})) + l_{2}a_{3}(\cos\varphi_{2}(2\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) - \sin\varphi_{2}\dot{\varphi}_{2})(2\dot{\varphi}_{1} + \dot{\varphi}_{2}) + l_{3}a_{3}\cos\alpha(2\ddot{\varphi}_{1} + 2\ddot{\varphi}_{2}) = u_{1}$$
(5)

 $J_{2}(\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) + J_{3}(\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) + m_{2}l_{2}a_{2}(\cos\varphi_{2}\ddot{\varphi}_{1} + \sin\varphi_{2}\dot{\varphi}_{1}^{2}) + m_{3}[l_{3}^{2}(\ddot{\varphi}_{1} + \ddot{\varphi}_{2}) + l_{2}l_{3}(\cos(\varphi_{2} + \alpha)\ddot{\varphi}_{1} + \sin(\varphi_{2} + \alpha)\dot{\varphi}_{1}^{2}) + l_{2}a_{3}(\cos\varphi_{2}\ddot{\varphi}_{1} + \sin(\varphi_{2} + \alpha)\dot{\varphi}_{1}^{2}) + l_{3}a_{3}\cos\alpha(2\ddot{\varphi}_{1} + 2\ddot{\varphi}_{2})] = u_{2}$ (6)

Далее будем полагать, что

$$\alpha = \pi, \ l_3 = a_3 + \frac{m_2}{m_3} a_2. \tag{7}$$

При сделанных предположениях (7) система дифференциальных уравнений (5), (6) примет вид:

$$\begin{split} [J_1 + J_2 + J_3 + m_2 l_2^2 + m_3 (l_2^2 + l_2^2)] \ddot{\varphi}_1 + [J_2 + J_3 + m_3 l_3^2] \ddot{\varphi}_2 &= u_1, \\ [J_2 + J_3 + m_3 l_3^2] (\ddot{\varphi}_1 + \ddot{\varphi}_2) &= u_2. \end{split}$$

Разрешим эту систему относительно $\ddot{\varphi}_1$ и $\ddot{\varphi}_2$. В результате получим

$$\ddot{\varphi}_1 = q(u_1 - u_2),\tag{8}$$

$$\ddot{\varphi}_2 = -qu_1 + (q+p)u_2,\tag{9}$$

где

$$p = \frac{1}{J_2 + J_3 + m_3(l_3^2 - 2 l_2 a_3)}, \quad q = \frac{1}{J_1 + (m_2 + m_3)l_2^2}.$$

Оптимизация времени разворота трех пробок

Далее будем рассматривать задачу о перемещении захвата сначала с помощью вращения большой и средней пробок, а затем, одной малой пробки. Предположим, что в заключительный момент захват должен находиться в точке Q_f с координатами x^f , y^f . В связи с этим, в момент завершения вращения большой и малой пробок t_1 и начала вращения малой пробки, центр малой пробки O_3 должен находиться на окружности радиуса R_3 с центом в точке x^f , y^f , т.е. на окружности

$$(x - x^{f})^{2} + (y - y^{f})^{2} = R_{3}^{2}$$
 (10)

в некоторой точке \bar{Q} с координатами \bar{x}, \bar{y} .

Не трудно показать, что декартовы координаты центра малой пробки связаны с угловыми координатами следующим образом:

$$x(O_3) = l_2 \cos \varphi_1 - l_3 \cos(\varphi_1 + \varphi_2), \qquad (11)$$

$$y(O_3) = l_2 \sin \varphi_1 - l_3 \sin (\varphi_1 + \varphi_2).$$
 (12)

Ниже на рис. 2 показаны положения расположения геометрических центров и центров масс большой, средней и малой пробок.

Обозначим угол между прямой O_1O_3 и осью x через φ_1^* . Для этого угла справедлива формула

$$\varphi_1^* = \arccos \frac{x(O_3)}{\sqrt{x^2(O_3) + y^2(O_3)}} \operatorname{sign} y(O_3).$$

Согласно теореме косинусов

$$\cos LO_3O_1O_2 = \frac{l_3^2 - l_2^2 - x^2(O_3) - y^2(O_3)}{2l_2\sqrt{x^2(O_3) + y^2(O_3)}},$$

и, соответственно,

$$LO_3O_1O_2 = \arccos \frac{l_3^2 - l_2^2 - x^2(O_3) - y^2(O_3)}{2l_2\sqrt{x^2(O_3) + y^2(O_3)}}.$$

Тогда в случае а) (смотри рисунок 3а) $\varphi_1^a = \varphi_1^* + LO_3O_1O_2,$

Рисунок 3 – возможные варианты для углов φ_1^a , φ_2^b , φ_2^a , φ_2^b

и в случае b)

$$\varphi_1^b = \varphi_1^* - LO_3O_1O_2.$$

Для угла $LO_3O_2O_1$ справедливо представление

$$\cos LO_3O_2O_1 = \frac{x^2(O_3) + y^2(O_3) - l_3^2 - l_2^2}{2l_2 l_3},$$

Для углов φ_2^a и φ_2^b имеют место формулы

$$\varphi_2^a = L O_3 O_2 O_1 - \pi, \tag{13}$$

$$\varphi_2^b = \pi - L O_3 O_2 O_1. \tag{14}$$

Формулы (13)-(14) позволяют по известным декартовым координатам точки О₃ найти соответствующие значения углов φ_1 и φ_2 (два варианта).

Заменим окружность (10) на дискретное множество (общее число точек на окружности – *l*). В дальнейшем по этому множеству мы будем осуществлять одномерную оптимизацию.

$$x_{k} = x^{f} + R_{3} \cos k \frac{2\pi}{l} \qquad (k = 0, 1, ..., l - 1)$$
$$y_{k} = y^{f} + R_{3} \sin k \frac{2\pi}{l} \qquad (15)$$

Для точки (x_k, y_k) определяем пары углов $(\varphi_{1k}^a, \varphi_{2k}^a)$, $(\varphi_{1k}^b, \varphi_{2k}^b)$ по формулам (11), (12), (13), (14). Согласно [5] оптимальное время перехода из позиции $(\varphi_{10}, \varphi_{20})$ в позицию $(\varphi_{1k}^a, \varphi_{2k}^a)$ (или $(\varphi_{1k}^b, \varphi_{2k}^b)$) определяется формулой

$$\vartheta_1 = 2 \sqrt{\frac{|q+p||\varphi_{1k} - \varphi_{10} + \frac{q}{q-p}(\varphi_{2k} - \varphi_{20})|}{\mu_1 q p}},$$
(16)

если

$$|q+p||\varphi_{1k} - \varphi_{10} + \frac{q}{q-p}(\varphi_{2k} - \varphi_{20})| \ge \frac{\mu_1}{\mu_2} q |\varphi_{1k} - \varphi_{10} + \varphi_{2k} - \varphi_{20}|,$$
(17)

и формулой

$$\vartheta_2 = 2\sqrt{\frac{|\varphi_{1k} - \varphi_{10} + \varphi_{2k} - \varphi_{20}|}{\mu_2 p}},\tag{18}$$

если

$$|q+p||\varphi_{1k}-\varphi_{10}+\frac{q}{q-p}(\varphi_{2k}-\varphi_{20})| \le \frac{\mu_1}{\mu_2} q |\varphi_{1k}-\varphi_{10}+\varphi_{2k}-\varphi_{20}|.$$
(19)

Определим на какой угол нужно развернуть малую пробку, чтобы привести захват в точку Z^f, имеющую координаты (x^{f}, y^{f}). Этот угол будем обозначать $\Delta \varphi_{3}^{f}$. Согласно (11), (12)

$$\overrightarrow{O_2O_3} = -l_3(\cos(\varphi_1 + \varphi_2); \sin(\varphi_1 + \varphi_2)).$$

Очевидно, что

$$\overline{O_3 Z^f} = (x^f - l_2 \cos \varphi_1 + l_3 \cos(\varphi_1 + \varphi_2); y^f - l_2 \sin \varphi_1 + l_3 \sin(\varphi_1 + \varphi_2)).$$

Тогда

$$\cos L DO_3 Z^f = -\frac{l_3}{R_3^2} \left(\cos(\varphi_1 + \varphi_2) \left(x^f - l_2 \cos \varphi_1 + l_3 \cos(\varphi_1 + \varphi_2) + \sin(\varphi_1 + \varphi_2) \left(y^f - l_2 \sin \varphi_1 + l_3 \sin(\varphi_1 + \varphi_2) \right) \right) = S(x^f, y^f, \varphi_1, \varphi_2).$$

Введем обозначения:

$$\alpha_1 = |\arccos S(x^f, y^f, \varphi_1, \varphi_2) + \varphi_{30} + \varphi_3^*|$$

И

$$\alpha_2 = |2\pi - \arccos S(x^f, y^f, \varphi_1, \varphi_2) - \varphi_{30} - \varphi_3^*|.$$

Тогда
$$|L DO_3 Z^f| = \min\{\alpha_1, \alpha_2\}$$
. Очевидно, что
 $|\Delta \varphi_3^f| = |L DO_3 Z^f| = \min\{\alpha_1, \alpha_2\}$ (20)

И

$$0 \le |\Delta \varphi_3^f| \le \pi.$$

Согласно (4) уравнение движения малой пробки при фиксированных большой и средней пробках будет иметь вид

$$J_3 \ddot{\varphi_3} = u_3.$$

В этом случае, как показано в [4,5], оптимальное время разворота малой пробки на угол $\Delta \varphi_3^f$ будет равно

$$\vartheta_3 = 2 \sqrt{\frac{J_3 \left| \Delta \varphi_3^f \right|}{\mu_3}}.$$
(21)

В результате для каждой точки, полученной при дискретизации окружности (10) (см. (15)), суммарное время разворота трех пробок будет определяться формулой

$$\vartheta = \vartheta_1^* + \vartheta_3, \tag{22}$$

где $\vartheta_1^* = \vartheta_1$ если выполняется условие (17) и $\vartheta_1^* = \vartheta_2$, если выполняется условие (19), величины $\vartheta_1, \vartheta_2, \vartheta_3$ задаются формулами (16), (18) и (21). Далее суммарное время на разворот трех пробок ϑ минимизируется по всем точкам из формулы (15).

Численный эксперимент

Задача вычисления минимального значения величины (22) на окружности (10) после ее дискретизации (15) решается простым перебором. Для каждой точки из (15) вычисляется значение (22) и из этих значений выбирается минимальное.

На графике 4 а) представлен результат оптимизации суммарного времени разворота двух пробок в предположении, что начальное условие задается угловыми координатами $\varphi_1^0 = 80^\circ$, $\varphi_2^0 = 10^\circ$, $\varphi_3^0 = 10^\circ$. Конечная точка Q^f имеет координаты (-0.13; -0.79). На оси абсцисс откладывается номер точки на окружности (15). На оси ординат откладывается суммарное время разворота всех трех пробок. Дискретизация окружности (15) производилась с шагом 0,33 радиан.

Рисунок 4 – вычислительный эксперимент

График 4 b) представляет вариант оптимизации суммарного времени разворота трех пробок при начальных условиях $\varphi_1^0 = 10^\circ$, $\varphi_2^0 = 20^\circ$, $\varphi_3^0 = 20^\circ$. У конечной точки Q^f_- координаты (-0.07; -0.79). Дискретизация окружности (15) в этом случае проводилась с шагом 0,21 радиан.

Заключение

В статье предложена математическая модель перегрузочного устройства для реактора на быстрых нейтронах БН-800, в которой не предполагается совпадение центров масс и геометрических центров вращающихся пробок машины перегрузки ядерного топлива. При предположении, что одновременно могут вращаться лишь большая И средняя пробки, предложен алгоритм, обеспечивающий наведение захвата механизма перегрузки на заданную точку за минимальное время. Применение такого алгоритма будет способствовать сокращению времени, требуемого на перегрузку ядерного топлива, и приведет к сокращению времени остановки энергоблока АЭС.

Благодарность

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ, Государственный контракт № 075-03-2020-582/4.

Библиографический список

- 1. Ташлыков О. Л. Эксплуатация и ремонт ядерных паропроизводящих установок АЭС. В 2 кн. Кн. 1 / О. Л. Ташлыков, А. Г. Кузнецов, О. Н. Арефьев. Москва : Энергоатомиздат, 1995. 256 с. ISBN 5-283-03609-Х.
- Коробкин В. В. Методы маршрутизации и их приложения в задачах повышения безопасности и эффективности эксплуатации атомных станций / В. В. Коробкин, А. Н. Сесекин, О. Л. Ташлыков, А. Г. Ченцов. – Москва : Новые технологии, 2012. – 234 с. – ISBN 978-5-94694-027-6.
- 3. Бельтюков А. И. Атомные электростанции с реакторами на быстрых нейтронах с натриевым теплоносителем : учеб. пособие / А. И. Бельтюков, А. И. Карпенко, С. А. Полуяктов [и др.]. Екатеринбург : УрФУ, 2013. 548 с.
- Sequential optimal control of the nuclear fuel reload mechanism / Yu. F. Dolgii, A. Sesekin, O. L. Tashlykov, K. T. Tran. DOI 10.1063/1.5133551 // AIP Conference Proceeding. 2019. Vol. 2172. P. 070015.
- Optimal Control of the System of Coupled Cylinders / Yu.F. Dolgii, A. A. Petunin, A. N. Sesekin, O. L. Tashlykov. – DOI 10.1063/1.5082025 // AIP Conference Proceeding. – 2018. – Vol. 2048. – P. 020007.
- 6. Аппель П. Теоретическая механика. Т. 1 / П. Аппель. Москва : ФИЗМАТГИЗ, 1960. 515 с.