Валихов В.Д., Кахидзе Н.И, Ахмадиева А.А., Мубараков Р.Г.

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ МЕТАЛЛОМАТРИЧНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЯ, УПРОЧНЁННОГО БАЗАЛЬТОВЫМИ ВОЛОКНАМИ

Аннотация. В работе исследовано влияние базальтовых волокон на структуру и физикомеханические свойства алюминиевого сплава АК7.Исследована структура и фазовый состав базальтовых волокон, которые состоят из оксидов железа, кремния, магния, кальция и др. Литьё позволило ввести базальтовые волокна в алюминиевый сплав АК7. Введение волокон базальта привело к увеличению твёрдости и механических свойств при растяжении сплава АК7.

Ключевые слова: алюминиевый сплав, АК7, базальт, волокна, упрочнение, композиционный материал, металл, алюминий.

Abstract. This paper investigates the effect of basalt fibers on the physical and mechanical properties of the aluminum alloy AK7. It was found that with the introduction of 1.5 wt.% Basalt fibers, the microhardness increases from 68 HV to 82 HV, the width of the eutectic decreases from 12 to 7.5 μ m.

Keywords: aluminum alloy, AK7, basalt, fibers, hardening, composite material, metal, aluminum.

Введение

Алюминий и его сплавы широко используются в автомобилестроении [1], авиастроении [2], строительстве [3], электротехнике [4], энергетике [5], и других отраслях. Но не смотря на обширность сфер применения алюминия, в настоящее время становится вопрос об увеличении его механических свойств. За последнее десятилетие появилось множество исследований по упрочнению алюминиевых сплавов различными керамическим микро- и наноразмерными волокнами и частицами, нанотрубками [6-9]. Введение керамических частиц позволяет увеличить прочностные и физико-механические свойства алюминиевых сплавов, такие как предел прочности, предел текучести, модуль упругости, за счёт различных механизмов распределения нагрузки [10].

Базальтовые волокна, впервые были получены в 60-х годах прошлого века в СССР для применения в аэрокосмической программе [11]. Интерес к базальтовым волокнам возник из-за следующих преимуществ: обширная сырьевая база, физикомеханические характеристики, сравнимые с характеристиками высокомодульных стеклянных волокон, экологичность производства [12]. Начиная с конца прошлого века волокна из базальта стали применять в гражданских целях: армирование строительных конструкций, в тепло- и шумоизоляции и др. [13]. Последние исследования в применении базальта показывают заинтересованность учёных в синтезе композиционных материалов на основе алюминия и магния [14-16].

365

Производство базальтовых волокон с момента его получения в промышленных масштабах значительно улучшилось и является одностадийной технологией, что

Перспективным направлением применения базальтовых волокон является упрочнение ими лёгких сплавов с высоким содержанием кремния, т.к. в процессе синтеза композиционного материала происходит химическая реакция между упрочнителем и металлической матрицей. В результате на границе раздела фаз возможен синтез оксидной плёнки, обладающей высокими механическими характеристиками [17]. Высокая степень адгезии между базальтом и алюминием позволяет избежать предварительного растрескивания композиционного материала на границе раздела и, следовательно, достичь большего эффекта упрочнения при введении базальта. Граница раздела между базальтом и алюминиевой матрице исследована в работе [18].

Цель работы – получение и исследование влияния волокон базальта на структуру и физико-механические свойства алюминиевого сплава АК7.

Материалы и методы

В качестве исходных материалов для синтеза и исследования использованы литейный алюминиевый сплав AK7 системы Al-Si с химическим составом (Al – 90.4%, Si – 6.5-7.5%, Fe – 0.5%, Cu – 0.35%, Mg – 0.25-0.40%, Mn – 0.35%, Zn – 0.35%, Ti – 0.25%) и базальтовые волокна со средней длиной 56 мкм и диаметром 8 мкм.

Алюминиевый сплав АК7 массой 1,5 кг плавили в графитово-шамотном тигле при температуре 780°С. Перед введением в алюминиевый расплав базальт помещали в алюминиевую капсулу и нагревали в печи до температуры 200°С. После полного расплавления алюминия тигель с расплавом перемещался в печь открытого типа, где температура поддерживалась на уровне 730°С. Введение базальта сопровождалось механическим перемешиванием и производилось в зону перемешивания. После полного введения базальтовых волокон, перемешивания продолжалось в течении 30 секунд. Разливка расплава осуществлялась в стальной кокиль с одновременной вибрационной обработкой расплава до его кристаллизации. Содержание базальтовых волокон композиционном материале составило 1,5 масс.%. Исходный алюминиевый сплав АК7 был получен в аналогичных условиях без введения базальта.

Геометрических размеры волокон были получены методом лазерной дифракции на аппарате ANALYSETTE 22 MicroTec plus (FRITSCH, Gamburg, Germany). Микроструктура базальтового волокна, поверхности излома образцов и распределение базальта по объёму матрицы были исследованы с помощью растрового электронного микроскопа Quanta 200 3D. Химический состав базальта исследовался методом атомно-эмиссионного анализа на атомно-эмиссионном спектрометре с многоканальным анализатором эмиссионных спектров. Воздействие

высоких температур на базальтовые волокна исследовалось выдерживанием волокон в печи течении 15 минут при температуре 600°С. После воздействия высоких температур был проведён анализ химического состава методом атомноэмиссионного спектрометра.

Плотность исходного сплава и получившегося композиционного материала была измеряна методом гидростатического взвешивания. Микроструктура композиционного материала изучена на оптическом микроскопе Olympus GX71 с предварительным электрохимическим травлением в 5-% растворе тетрафторборной кислоты. Микротвёрдость была измерена методом Виккерса с нагрузкой на индентор 50 граммов, а твёрдость измерялась методом Бринелля с индентором диаметром 2,5 мм и нагрузкой 62,5 кг.

Испытания на растяжение проводились с использованием универсальной электромеханической испытательной машины Instron3369 со скоростью движения траверсы 0,2 мм/мин.

Базальт

Проведённый фазовый анализ образцов показал, что в фазовом составе базальта преимущественно содержатся оксид кремния, оксид алюминия, оксид кальция и оксид железа. Результаты представлены в таблице 1. Воздействие высоких температур на волокна базальта не приводит к значительному изменению фазового состава, что свидетельствует об их стабильности в процессе литья и после него. Содержание серы в образцах базальта до и после отжига не превышает 0.03 масс.%.

Базальт	SiO ₂ ,%	Fe ₂ O ₃ ,%	MgO,%	CaO,%	Na ₂ O,%	K ₂ O,%	TiO ₂ ,%	P ₂ O ₅ ,%	MnO,%	Al ₂ O ₃ ,%	S,%
Исходный	43.39	11.30	2.89	22.39	3.68	0.94	1.52	0.53	0.22	13.71	0.01
После отжига	43.91	11.35	2.87	21.58	3.55	0.93	1.49	0.62	0.22	13.66	0.03

T (1	т v		~
	— (1)930BFIN	COCTAR	DASAULTA
таолица т	Ψusobbin	COCTUD	ousambra

На рисунке 1 представлены РЭМ-изображения волокон базальта. Видно, что измельчённые базальтовые волокна имеют различные длину и диаметр. В порошке присутствуют крупные частицы, появившиеся, предположительно, из-за особенностей производства базальтового волокна, на котором сходное сырьё – базальтовую крошку – расплавляют в плавильной печи при температуре 1500°С. Расплавленная крошка подаётся на фильерную пластину, из которой вытекает в виде раздельных струек на раздувочное устройство, посредством гравитационных сил или под давлением сжатого воздуха [19]. На поверхности базальтовых волокон были обнаружены частицы со средним размером менее 1 мкм, которые являются следствием механического измельчения волокон.

Рисунок 1 – РЭМ изображение волокон базальта.

Исследование геометрических размеров волокон выявило, что распределение имеет мультимодальный характер: большую часть составляют волокна со средним размером 56 мкм, что очевидно является длиной волокон. Множественные пики в диапазоне от 0,1 до 1 мкм объясняются различными возможными диаметрами волокон, что также подтверждается исследованиями растровой электронной микроскопии.

Структура композита

Исследования микроструктуры, методом оптической микроскопии (рисунок 2 а,б) показали, что структура исходного сплава АК7 представлена дендритами.

Рисунок 2- Оптические изображения микроструктуры сплавов а) АК7; б) АК7 + 1,5 мас.% БВ; в) РЭМ-изображение поверхности композита АК7 + 1,5 мас.% БВ; г) картирование по кальцию поверхности композита АК7 + 1,5 мас.% БВ

Средний размер дендритной ячейки, рассчитанный методом случайных секущих, составил 19 мкм. Введение 1,5 мас.% базальтовых приводит к изменению микроструктуры: происходит переход от дендритной к зернистой (рисунок 2б), при этом средний размер зерна составил 32 мкм. Плотность полученного композиционного материала при введении 1,5 мас.% волокон составила 2,63 г/см3и сопоставима с плотностью алюминиевой матрицы, которая составила 2,68 г/см3.

Переход от дендритной структуры к бездендритной осуществляется за счёт того, что введение 1,5 мас.% базальта становится достаточно для сдерживания роста зёрен в процессе кристаллизации расплава. При этом, исследование структуры методами оптической микроскопии не позволяет точно распознать волокна базальта в структуре алюминиевой матрицы. Исследование микроструктуры

композиционного материала с использованием электронной микроскопии, рисунок 2в, показало, что структура представлена алюминиевой матрицей, твёрдым раствором Al-Si и эвтектикой кремния. По результатам исследования также видно, что в зоне кремниевой эвтектики наблюдается высокая концентрация железа, алюминия, марганца и др. Это может косвенно свидетельствовать о наличии волокон базальта в эвтектической зоне алюминиевого матрицы. По данным картирования по элементам образца композиционного материал AK7-1,5% базальта, рисунок 2г, наибольшее количество элементов, входящих в химический состав базальтов сконцентрировано в эвтектических включениях кремния.

Механические свойства композита

Результаты испытаний на одноосное растяжения композиционного материала АК7+1,5% мас. базальтовых волокон показаны на рисунке 3а в таблице 2.

Образец	Микротвёрдость по методу Виккерса, HV	Твёрдость по методу Бринелля, НВ	Предел текучести, МПа	Предел прочности, МПа	Деформаци я, %
АК7	68±1	71±0,8	18±1,5	118±11,2	2,5±0,05
АК7+1,5 % БВ	92±1,1	95±1	30±2,1	156±12	2,4±0,04

Таблица 2-Механические свойства полученных материалов

Из диаграммы растяжения видно, что введение 1,5 мас.% базальта привело к увеличению предела текучести сплава АК7 с 18 МПа до 30 МПа, а предел прочности увеличился с 118 МПа до 156 МПа, пластичность незначительно уменьшилась с 2,5 до 2,4%. Увеличение предела прочности обусловлено вкладом базальтовых волокно, которые позволяют формировать каркасную зеренную структуру композиционного материала, как было показано на рисунке 2.

Исследование поверхностей разрушения образцов композиционных материалов АК7 + 1,5 мас.% (рисунок 3 б,в) базальта показали наличие базальтовых волокон, форма и размер которых не изменяются в процессе литья. Видно, что разрушение происходит по смешанному механизму. Волокна базальта разрушаются хрупко под действием нагрузки, как показано на рисунке 36. Кроме этого в процессе деформации происходит выкрашивание крупных волокон базальта из алюминиевой матрицы, что может свидетельствовать о недостаточной адгезии на границе раздела волокно-матрица. Оптимизация процесса подготовки порошка, содержащего волокна базальта и процесса обработки внешними воздействиями должна повысить смачиваемость поверхности базальта и увеличения адгезии.

a)

Исследования микротвёрдости показали, что при введении 1,5 мас.% волокон значение увеличивается на 35% в сравнении с исходным сплавом. Результаты измерения твёрдости показали, что введение 1,5 мас.% базальта увеличивает значение величины твёрдости с 71 до 95 НВ.

Заключение

Установлено, что литьё позволяет ввести и распределить базальтовые волокна в расплаве алюминиевого сплава АК7.

Установлено, что введение базальта приводит к повышению механических свойств алюминиевого сплава АК7. Введение 1,5 мас.% базальта приводит к увеличению микротвёрдости с 68 до 92 HV, твёрдости со 71 до 95 HB, а также позволяет увеличить предел текучести, предел прочности с 18 до 30 МПа и с 118 до 156 МПа

Установлено, что на поверхности разрушения присутствуют волокна базальта, которые разрушаются по хрупкому механизму. При этом в процессе деформации происходит их выкрашивание из-за недостаточной адгезии между матрицей и поверхностью базальта.

Исследование выполнено за счет гранта Российского научного фонда (проект № 17-13-01252).

Библиографический список

- Poznak A. Automotive Wrought Aluminium Alloys/Poznak A., Freiberg D., Sanders P. // Fundamentals of Aluminium Metallurgy. – Woodhead Publishing, 2018. – C. 333-386.
- 2. Aluminium alloys for aerospace applications / Rambabu P. [et al.] // Aerospace materials and material technologies. Springer, Singapore, 2017. C. 29-52
- 3. Wijesekara D. M. Cost effective and speedy construction for high-rise buildings in Sri Lanka by using aluminium panel system formworks. 2012.
- 4. Joel I. An aluminium superinductor / Joel I., Wang J., Oliver W. D. // Nature materials. -2019. -T. 18. -№. 8. -C. 775.
- 5. An ultrafast rechargeable aluminium-ion battery / Lin M. C. [et al.] // Nature. 2015. T. 520. №. 7547. C. 324-328.
- Investigation of mechanical properties and dry sliding wear behaviour of squeeze cast LM6 aluminium alloy reinforced with copper coated short steel fibers / Chelladurai S. J. S. [et al] // Transactions of the Indian Institute of Metals. -2018. -T. 71. - №. 4. -C. 813-822.
- 7. A method for introduction of Al2O3 nanofiber into aluminum alloy / Chen Y. [et al.] // IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018. T. 347. №. 1. C. 012050.

- 8. Физико-механические и электрические свойства литых сплавов на основе алюминия, упрочненных наночастицами алмаза /С.А. Ворожцов [и др.] // Известия высших учебных заведений. Физика, 2014., Т. 57, № 11, С. 31-36
- 9. Influence the carbon nanotubes on the structure and mechanical properties of aluminumbased metal matrix composites / Vorozhtsov S. [et al] //AIP Conference Proceedings. – AIP Publishing LLC, 2016. – T. 1772. – №. 1. – C. 030021.
- 10. Advanced metal matrix nanocomposites / Malaki M. [et al.] //Metals. 2019. T. 9. №. 3. – C. 330.
- 11.Colombo C. Static and fatigue characterisation of new basalt fibre reinforced composites / Colombo C., Vergani L., Burman M. // Composite structures. 2012. T. 94. №. 3. C. 1165-1174.
- 12.Militky J. Ultimate mechanical properties of basalt filaments / Militky J., Kovacic V. // Textile Research Journal. 1996. T. 66. №. 4. C. 225-229.
- 13.Mineral fibres: basalt / Wu Z. [et al.] //Handbook of Natural Fibres. Woodhead Publishing, 2020. C. 433-502
- 14. Investigation on mechanical properties and failure mechanisms of basalt fiber reinforced aluminum matrix composites under different loading conditions / Zhiming Y. [et al.] // Journal of Composite Materials. 2018. T. 52. №. 14. C. 1907-1914;
- 15.Reddy S. S.. Effect of fly ash and basalt on wrought and cast aluminum alloy / Reddy S. S., Dhanasekaran R. // Materials Today: Proceedings. –2018. T. 5. №. 13. C. 27112-27117;
- 16.Basalt fibre reinforced aluminium matrix composites–A review / Abraham C. B. [et al.] //Materials Today: Proceedings. 2020. T. 21. C. 380-383
- 17.Fibre/matrix intermetallic phase formation in novel aluminium-basalt composites. / O Adole [et al.] // Materials Letters. 2019. T. 239, C. 128-131;
- 18.Microstructures and mechanical properties of BP/7A04 Al matrix composites / Fan C. [et al.] //Transactions of Nonferrous Metals Society of China. – 2019. – T. 29. – №. 10. – C. 2027-2034
- 19.Mineral fibres: basalt / Wu Z. et al. //Handbook of Natural Fibres. Woodhead Publishing, 2020. C. 433-502.