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Abstract 

The diphenyl sulfoxide-catalyzed conversion of aldehydes to  

1,1-dichlorides is reported. The reaction proceeds via a sulfurous 

(IV)-catalysis manifold in which diphenyl sulfoxide turnover is 

achieved using oxalyl chloride as a consumable reagent. 
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1. Introduction 

Nucleophilic substitutions SN are general chemical trans-

formations, as they allow, for example, strategic building 

of C–Cl, C–O, C–N and C–C bonds [1–10]. In addition, gem-

inal dihalides, especially dichlorides, are important inter-

mediates in chemical synthesis, and the traditional syn-

thesis protocols are often limited in terms of cost efficien-

cy and waste balance [11, 12]. However, research in this 

area is at an early stage in the study of such catalytic reac-

tion. Although by now several effective protocols for the 

preparation of dichlorides from aldehydes catalyzed by a 

Lewis base have been disclosed [13, 14], all possibilities 

for studying these reactions have not yet been realized 

(Scheme 1). 

Dichlorides – important class of intermediates in organic 

synthesis. They were used for alkenylation of carbonyl 

compounds [15, 16], cyclopropanation and epoxidation  

[17–19], dimerization [20, 21] and others [22–25]. In addi-

tion, geminal dichlorides are encountered as structural mo-

tifs in polyhalogenated natural products [26, 27] (Fig. 1). 

2. Experimental 

Yields are given for isolated products showing one spot 

on a TLC plate and no impurities detectable in the NMR 

spectrum. The identity of the products prepared by dif-

ferent methods was checked by comparison of their NMR 

spectra. 

1H and 13C NMR spectra were recorded at 400 MHz for 
1H and 100 MHz for 13C NMR at room temperature; the 

chemical shifts (δ) were measured in ppm with respect to 

the solvent (CDCl3, 1Н: δ = 7.26 ppm, 13C: δ = 77.16 ppm; 

[D6] DMSO, 1Н: δ = 2.50 ppm, 13C: δ = 39.52 ppm). Cou-

pling constants (J) are given in Hertz. Splitting patterns of 

apparent multiplets associated with an averaged coupling 

constants were designated as s (singlet), d (doublet),  

t (triplet), q (quartet), sept (septet), m (multiplet), dd 

(doublet of doublets) and br (broadened). Melting points 

were determined with a «Stuart SMP 30», the values are 

uncorrected. Flash chromatography was performed on 

silica gel Macherey Nagel (40–63 µm).  

Reaction progress was monitored by GC/MS analysis and 

thin layer chromatography (TLC) on aluminum backed plates 

with Merck Kiesel 60 F254 silica gel. The TLC plates were 

visualized either by UV radiation at a wavelength of 254 nm, 

or stained by exposure to a Dragendorff’s reagent or potassi-

um permanganate aqueous solution. All the reactions were 

carried out using dried and freshly distilled solvent. 

2.1. General method for synthesis of dichlorides from 

aldehyde 

Diphenyl sulfoxide (Ph2SO) (40 mg, 0.2 mmol, 0.1 equiv, 

10 mol.%) and aldehyde 1 (2 mmol, 1 equiv) were dis-

solved in 15 mL of anhydrous toluene in a 25 mL round 

bottom flask equipped with a magnetic stirring bar. The 

resulting solution was treated dropwise with neat oxalyl 

chloride (0.26 mL, 3 mmol, 1.5 equiv (chlorine source)) 
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using an adjustable volume pipette (0.1–1.0 mL), followed 

by the temperature increase up to 100 °C; the mixture was 

stirred for 6 h. The reaction progress was monitored by 

GC-MS. After the reaction was complete, the solution was 

filtered and concentrated in vacuum. The crude mixture 

thus obtained was purified by flash chromatography on 

silica (petroleum ether/Et2O – 19/1). 

2.1.1. (Dichloromethyl)benzene 4а 

Obtained from 1a (212 mg, 2 mmol), diphenyl sulfoxide 

(Ph2SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol.%), and ox-

alyl chloride (0.26 mL, 3 mmol, 1.5 equiv), in anhydrous 

toluene (15 mL). Colorless oil (242 mg, 75%). 1H NMR 

(CDCl3, 400 MHz) δ (ppm): 6.75 (s, 1H, CH), 7.44 (m, 3H, 

HAr), 7.66 (m, 2H, HAr). 13C NMR (CDCl3, 100 MHz)  

δ (ppm): 72.0, 126.2, 128.8, 123.0, 140.4. 

2.1.2. 1-(Dichloromethyl)-4-methylbenzene 4b 

Obtained from 1b (240 mg, 2 mmol), diphenyl sulfoxide 

(Ph2SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol.%), and ox-

alyl chloride (0.26 mL, 3 mmol, 1.5 equiv), in anhydrous 

toluene (15 mL). Colorless oil (278 mg, 80%). 1H NMR 

(CDCl3, 400 MHz) δ (ppm): 2.40 (s, 3H, CH3), 6.68 (s, 1H, 

CH), 7.23 (m, 2H, HAr), 7.48 (m, 2H, HAr). 13C NMR (CDCl3, 

100 MHz) δ (ppm): 21.7, 71.6, 126.1, 129.3, 137.5, 140.9. 

2.1.3. 1-Bromo-4-(dichloromethyl)benzene 4с 

Obtained from 1с (370 mg, 2 mmol), diphenyl sulfoxide 

(Ph2SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol.%), and ox-

alyl chloride (0.26 mL, 3 mmol, 1.5 equiv), in anhydrous 

toluene (15 mL). Colorless oil (345 mg, 72%). 1H NMR 

(CDCl3, 400 MHz) δ (ppm): 6.68 (s, 1H, CH), 7.46 (m, 2H, 

HAr), 7.55 (m, 2H, HAr). 13C NMR (CDCl3, 100 MHz)  

δ (ppm): 72.0, 124.3, 128.0, 131.9, 139.4.  

2.1.4. 1-(Dichloromethyl)-4-nitrobenzene 4d 

Obtained from 1d (302 mg, 2 mmol), diphenyl sulfoxide 

(Ph2SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol.%), and ox-

alyl chloride (0.26 mL, 3 mmol, 1.5 equiv), in anhydrous 

toluene (15 mL). Colorless oil (259 mg, 63%). 1H NMR 

(CDCl3, 400 MHz) δ (ppm): 6.78 (s, 1H, CH), 7.78 (m, 2H, 

HAr), 8.29 (m, 2H, HAr). 13C NMR (CDCl3, 100 MHz)  

δ (ppm): 70.2, 124.5, 127.9, 146.6, 149.2.  

2.1.5. (E)-(3,3-Dichloroprop-1-en-1-yl)benzene 4e 

Obtained from 1e (264 mg, 2 mmol), diphenyl sulfoxide 

(Ph2SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol.%), and ox-

alyl chloride (0.26 mL, 3 mmol, 1.5 equiv), in anhydrous 

toluene (15 mL). Colorless oil (286 mg, 77%). 1H NMR 

(CDCl3, 400 MHz) δ (ppm): 6.34 (d, J = 7.6 Hz, 1H, CH), 

6.39 (dd, J = 14.7 and 7.6 Hz, 1H, CH), 6.72 (d, J = 14.7 Hz, 

1H, CH), 7.41 (m, 5H, HAr). 13C NMR (CDCl3, 100 MHz)  

δ (ppm): 73.5, 127.0, 128.2, 129.1, 129.3, 132.5, 134.9. 

 
Scheme 1 Deoxydichlorination of aldehydes to 1,1-dichlorides 

 
Fig. 1 Natural products including a fragment of dichlorides 
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3. Results and discussion 

The investigation commenced with establishing the best 

conditions for the deoxydichlorination of aldehydes, 

employing benzaldehyde 1a as a model substrate 

(Scheme 2). First, the role of each reagent was evaluat-

ed. Oxalyl chloride on its own did not produce (Di-

chloromethyl)benzene 4a (Table 1, entry 1). The use of 

stoichiometric quantities of Ph2SO and (COCl)2 in ace-

tonitrile resulted in low conversion of 1a into 4a (en-

try 2). With 10 mol.% Ph2SO and 1 equiv of oxalyl chlo-

ride, 4a was formed in 15% conversion (entry 3), which 

increased to 51% after change the solvent on toluene 

(entry 4). The up of the temperature to 100 °C and use 

1.5 equiv of oxalyl chloride to give the best results of 

conversion to 92% (entry 11). 

Scheme 2 The reaction for optimization of the conditions 

Table 1 Optimization of the reaction conditions 

Entry 
Equiv of 

(COCl)2 

Ph2SO, 

mol.%  
Solvent 

T, 
°C 

t, 
h 

Conv., 

%b 

1 1 – MeCN 50 1 0 

2 1 100 MeCN 50 1 19 

3 1 10 MeCN 50 6 15 

4 1 10 Tol 50 6 53 

5 1 10 DCM 40 6 10 

6 1 10 DCE 50 6 18 

7 1 10 THF 50 6 37 

8 1 10 Et2O 30 6 4 

9 1 10 Tol 100 6 85 

10 1 10 Tol 100 12 88 

11 1.5 10 Tol 100 6 92 
aGeneral conditions: 1a (0.2 mmol), Ph2SO, dry solvent (1 mL), 

dropwise addition of neat (COCl)2. The reactions were carried out 

for 1–12 h before an aliquot (50 μL) was taken, quenched with 

aqueous solvent (1 mL), and analyzed by GC. 
bConversion to 4a was calculated from GC. 

The substrate scope was investigated next. As shown in 

Scheme 3, the reaction work well with different type of 

aromatic aldehydes, including donor and acceptor substit-

uents at the fourth position of the ring. The use of cin-

namaldehyde under the reaction conditions also showed 

good results. 

The proposed mechanism is depicted in Scheme 4. 

We think that the catalytic cycle start with quick for-

mation of the intermediate chlorodiphenylsulfonium 

chloride (B) upon treatment of diphenyl sulfoxide (A) 

with (COCl)2. Previously, a similar process was carried 

out by Denton with triphenylphosphine oxide as a cata-

lyst [14]. Next, in the catalytic cycle, the intermediate B 

reacts with the aldehyde 1 via oxygen to form the in-

termediate C, which then undergoes elimination to fur-

nish the geminal dichloride 4 and regenerate the cata-

lyst A. 

 
Scheme 3 Deoxydichlorination of aldehydes catalyzed by Diphenyl 

sulfoxide 

Scheme 4 Proposed mechanism 

4. Conclusions 

We have developed a highly expedient protocol for a cata-

lytic deoxydichlorination of aldehydes under conditions of 

a catalytic Swern Oxidation catalyzed by diphenyl sulfox-

ide. The salient features of the method are: (i) operational 

simplicity, (ii) low catalyst loading (10 mol.%), (iii) medi-

um reaction times and (iv) mild conditions. 
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