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We develop an autonomous agent effectively interacting with noisy quantum computer 

to solve magnetism problems. By using the reinforcement learning the agent is trained to find 

the best-possible approximation of a spin Hamiltonian ground state from self-conducted ex-

periments on quantum devices. 

 

Within a reinforcement learning approach an agent taking some actions interacts 

with environment, receives feedback, estimates rewards and corrects its actions to in-

crease a future reward. Reinforcement learning techniques have been actively devel-

oped and implemented in such a new field of research as quantum computing, in par-

ticular for quantum-error-correction systems [1]. It is important to note that only a few 

of these algorithms were tested on real quantum devices.  

Motivated by recent results of Google DeepMind team [2] obtained for classic Atari 

games in this work we develop and practically implement a reinforcement learning 

scheme for approximating the ground states of spin Hamiltonians on quantum comput-

ers. We follow a distinct logic and consider a spin Hamiltonian problem as a game with 

the following rules. Starting with a random quantum state a player performs several 

quantum actions and measurements to get the best score that means the lowest energy 

and, as a result, the best approximation of the spin Hamiltonian ground state. To play 

this game we develop a multi-neural-network agent that determines a sequence of 

quantum gates for a short quantum circuit. In contrast to previous approaches [3, 4], 

which faced problems originating from the decoherence and gate errors, we do not use 

a fixed sequence of quantum gates, and at each iteration the agent chooses a new gate 

for quantum circuit depending on the current state of a quantum device on the basis of 

the calculated correlation functions. During the training process the agent writes short 

quantum programs and runs them on a simulator with noise. Having trained the agent 

on the quantum simulator by using the developed reinforcement learning technique we 

demonstrate its performance on real IBM Quantum Experience devices.  
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Fig. 1. (a) The average reward achieved per circuit on the quantum simulator with noise 

for different elementary rotation angles. (b) Performance of the trained agent demonstrated 

in experiments on the IBM Q Vigo device. (c) Ground state energies obtained on the real de-

vice after local moment correction. 
 

Figure 1 (a) shows that the average reward during training process achieve satura-

tion value within 100 epochs for reasonably chosen training parameters in case of an-

tiferromagnetic Heisenberg dimer. Using trained agent, we performed a number of ex-

periments on real quantum device (IBM Q Vigo) which are presented in Fig. 1 (b). 

Each red arrow denotes the lowering of energy with the circuits built by the agent in a 

particular experiment. Blue line indicates the average energy obtained with known sin-

glet state quantum circuit on the real device showing the best possible ground state 

energy approximation on this device. To compensate the decoherence we use local spin 

correction procedure derived from a general sum rule for spin-spin correlation func-

tions of a quantum system with even number of antiferromagnetically-coupled spins in 

the ground state. The resulting ground state energies for each experiment are shown in 

Fig. 1 (c) which are close to exact solution of the problem. 

We also made qualitative comparison of the developed method with quantum var-

iational approach which is available in full text of the research [5]. 
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