циклотрона и облучаемой мишени. Ведется анализ углового распределения и составление теоретической карты нейтронных потоков ускорителя.

1. Experimental Nuclear Reaction Data (EXFOR) [электронный ресурс] //International Atomic Energy Agency. – URL: https://www-nds.iaea.org/exfor/ (22.01.2020)

УПАРИВАНИЕ АЗОТНОКИСЛЫХ РАСТВОРОВ С ДЕНИТРАЦИЕЙ ФОРМАЛИНОМ В ВЫПАРНОМ АППАРАТЕ С ЕСТЕСТВЕННОЙ ЦИРКУЛЯЦИЕЙ

<u>Костромин К.В.</u>¹, Новоселов И.К.¹, Бир А.А.¹, Зильберман Б.Я.², Мишина Н.Е.², Николаев А.Ю.², Блажева И.В.², Рябков Д.В.², Хомяков А.П.³

1) АО «СвердНИИхиммаш», Екатеринбург, Россия
 2) АО «Радиевый институт им. В.Г. Хлопина», Санкт-Петербург, Россия
 3) Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия

 E-mail: inkost@inbox.ru

EVAPORATION OF NITRIC ACID SOLUTIONS WITH FORMALINE DENITRATION IN A NATURAL-CIRCULATION EVAPORATOR

<u>Kostromin K.V.</u>¹, Novoselov I.K. ¹, Bir A.A.¹, Zilberman B.Y.², Mishina N.E. ², Nikolaev A.Y.², Blazheva I.V.², Ryabkov D.V.², Khomyakov A.P.³

¹⁾ JSC SverdNIIchimmash, Yekaterinburg, Russia

²⁾ JSC Khlopin Radium Institute, Saint-Petersburg, Russia

³⁾ Ural Federal University, Yekaterinburg, Russia

Abstract. This paper presents the results of research method for the concentration of high-level radioactive wastes (HLW) with simultaneous reagent denitration by formaldehyde solution. The research was carried out using simulation solution on a pilot full-scale evaporator stand

Экстракционная переработка облученного ядерного топлива АЭС предполагает образование хвостовых растворов разного уровня активности, в том числе высокорадиоактивных отходов (ВАО).

Основным лимитирующим фактором при упаривании высокоактивного рафината после фракционирования отработанного высоковыгоревшего ядерного топлива РУ БРЕСТ – ОД – 300 является образование осадков на основе нитрата бария, тяжёлые осадки которого, оседая в циркуляционной трубе выпарного аппарата, могут привести к её забиванию и срыву циркуляции. Осадкообразование нитрата бария зависит от концентрации суммарного нитратного фона в растворе.

Для увеличения кратности упаривания высокоактивного рафината с концентрацией азотной кислоты 2,6 моль/л был предложен метод концентрирования

ВАО с поддержанием концентрации азотной кислоты на уровне 3-4 моль/л с помощью упаривания в выпарном аппарате с выносной греющей камерой и естественной циркуляцией раствора с одновременной реагентной денитрацией раствором формальдегида.

Предложенный метод концентрирования исследован на опытном полномасштабном выпарном стенде, состоящим из выпарного аппарата с естественной циркуляцией раствора, конденсатором, абсорбером нитрозных газов и системой управления на основе датчиков температуры, расхода и давления, показатели которых выводились на пульт оператора.

Исследования проводились для определения расходного коэффициента ${\rm CH_2O/HNO_3}$, позволяющего разрушать азотную кислоту, поступающую с исходным раствором до поддержания концентрации азотной кислоты в кубовом растворе при упаривании на уровне 3-4 моль/л. Концентрация азотной кислоты в исходном растворе составляла 2,6 моль/л, расход варьировался от 12 до 20 л/ч, реагент подавался с концентрацией 6,75 моль/л и расходом от 1,7 до 5 л/ч, расходный коэффициент ${\rm CH_2O/HNO_3}$ изменялся от 0,25 до 0,66 моль/моль.

Исследования на полномасштабном выпарном оборудовании подтвердили принципиальную возможность предложенного метода. При расходном коэффициенте CH_2O/HNO_3 - 0,64 разложение азотной кислоты при упаривании в стационарном режиме составило ~40 %. Концентрация азотной кислоты при этом в кубовом растворе составляла 3,2 моль/л.