УДК 662.613.1

ПАРАМЕТРЫ И ПОКАЗАТЕЛИ ПРОЦЕССА КАРБОНИЗАЦИИ УГОЛЬНОЙ ЗОЛЫ

Н. А. Симанов¹, Г. Е. Масленников², А. Ф. Рыжков³

^{1,2,3} Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, Екатеринбург, Россия

¹ nikitajui@mail.ru

Аннотация. В настоящей работе приводится сводная таблица параметров проведения экспериментов по прямой карбонизации золы. Также даются следующие показатели: способность к улавливанию, которая представляет собой количество поглощаемого CO_2 на килограмм летучей золы, и эффективность карбонизации. Таблица построена на основе обзора девяти зарубежных работ.

Ключевые слова: CCS, CO₂, карбонизация, летучая зола, секвестрация

PARAMETERS AND INDICES OF THE COAL ASH CARBONIZATION PROCESS

N. A. Simanov¹, G. E. Maslennikov², A. F. Ryzhkov³

^{1,2,3} Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg, Russia

¹ nikitajui@mail.ru

Abstract. In this paper, a summary table of the parameters of experiments on direct ash carbonization. The following metrics are also given: the capture capacity, which is the amount of CO_2 consumed per kilogram of fly ash, and the carbonation efficiency. The table is based on a review of 9 sources.

Keywords: CCS, CO₂, carbonation, coal fly ash, sequestration

К омплексный процесс карбонизации основных компонентов зол тепловых электростанций (ТЭС) в процессе минерализации выбросов СО₂ позволяет повышать потребительские свойства золошлаков при снижении эмиссии CO₂ на 3-5%, что эквивалентно повышению коэффициента полезного действия (КПД) ТЭС на 1,5-2%. Интен-

[©] Симанов Н.А., Масленников Г.Е., Рыжков А.Ф., 2020

сивные научно-исследовательские и опытно-конструкторские работы (НИОКР, R&D) по новому направлению начинают проводиться в Китае, Индии, Австралии, США и странах ЕС.

В рамках настоящей работы выполнен обзор экспериментальных исследований по прямому методу карбонизации, когда все процессы протекают в одном объеме, также приводятся данные по влиянию параметров процесса на его эффективность.

Химический процесс карбонизации может быть представлен брутто-реакцией основных оксидов с CO₂ с образованием карбонатов [1]:

$$CaO + CO_2 \rightarrow CaCO_3$$
.

Такая реакция является экзотермической. Для получения высокой степени карбонизации необходимы высокие давления и концентрации CO_2 при низких температурах. Для достижения высокой эффективности карбонизации (CE) необходимо применение низкосиликатного высокодисперсного сырья и высоких температур [2]. Кроме того, можно обнаружить наличие двух максимумов CE, приходящихся на полусухую и суспензионную области. Основные показатели и параметры прямой карбонизации приведены в таблице.

Таблица

Источ- ник	Состав, %	<i>Р</i> , бар	<i>Т</i> , °С	<i>t</i> , ч	<i>L/S</i> , л/кг	Погл., кг/кг	Пот-ал, кг/кг	CE,%
[2]	SiO ₂ -41,8; Fe ₂ O ₃ -9,16;	10		S1,00	0,00	0,0260	0,074	35,50
	$Al_2O_3 - 18,39$; $SO_3 - 3,29$;	4	30	22,00	2,00	0,0090		12,10
	CaO - 6,74; MgO - 2,22;				5,00	0,0300		40,50
	$Na_2O - 1,38; K_2O - 1,13;$				10,00	0,0320		43,20
	$T_1O_2 - 1,03; P_2O_5 - 0,41;$				15,00	0,0350		47,20
	LOI (потери) — 0,38; следы — 0,38				20,00	0,0310		41,80
[3]	$SiO_2-37,93$; $Fe_2O_3-4,5$;			24,00	1,60	0,0463	0,118	39,24
	$M_2O_3=27,868, CaO=13,72,$ $MgO=1,91; SO_3=4,74;$	_	_	240,00		0,0546		46,27
	$CaO_{cb} - 4,91; W - 0,1;$ $\rho - 2450 \text{кг/м}^3$			579,00		0,0616		52,20
	$SiO_2-45,75; Fe_2O_3-3,99;$ Al ₂ O ₂ -20.05: C ₂ O - 21.6:	_	_	24,00	00,67	0,0105	0,163	6,44
	$M_2O_3 = 20,000, Cure = 21,00,$ $M_2O = -0,78; SO_3 = -2,75;$ $C = O_1 = -1,100; W_1 = -0,40;$			240,00		0,0158		9,69
	$CaO_{cB} = 1,10; W = 0,4;$ $\rho = 2290 \text{ kg/m}^3$			745,00		0,0298		18,28

Показатели и параметры процесса карбонизации угольной золы

Источ-	Состав %	P Gan	<i>T</i> ,	t u	L/S,	Погл.,	Пот-ал,	CF %
ник	Состав, 70	1,0ap	°C	1, 4	л/кг	кг/кг	кг/кг	CL, 70
[3]	$SiO_2-41,55; Fe_2O_3-4,49;$ $Al_2O_3-4,74; CaO-29,28;$	6–10	25- 37	24,00	0,67	0,0124	0,241	5,15
	MgO $-$ 4,47; SO ₃ $-$ 6,89; CaO _{cb} $-$ 7,08; W $-$ 0,3; $\rho - 2650 \text{ kr/m}^3$			240,00		0,0226		9,38
				520,00		0,0315		13,07
	SiO ₂ -51,23; Fe ₂ O ₃ -2,43;		30	_	1,00		0,103	4,18
	$Al_2O_3-26,0; CaO-9,2;$				2,00			4,72
[4]	MgO — 2,44; SO ₃ –0,36; Na ₂ O — 0,46; K ₂ O — 0,79	10			10,00			4,54
[+]			90	_	1,00			5,63
					2,00			5,61
					10,00			6,23
	$SiO_2-41,83$; $Fe_2O_3-9,16$;		80		20,00		0,074	33,12
	$Al_2O_3-18,39$; CaO - 6,74;		60		10,00	-		33,53
[5]	MgO — 2,22; SO ₃ -3,29; Na ₂ O — 1,38; K ₂ O — 1,13	1	70		5,00			30,67
			80	1,50				34,25
			00		10.00			33,88
			90		10,00			33,51
			90					34,48
	$SiO_2-50,3; Fe_2O_3-7,8;$		25	_	10,00		0,073	4,96
[6]	$Al_2O_3-21,8; CaO-7,2;$	1			7,14			5,00
	$MgO - 1,5; K_2O - 0,3$				5,00			3,92
	$SiO_2-49,3; Fe_2O_3-7,6;$	2	25	51,00	10,00	0,0245	0,204	12,00
[7]	$\begin{array}{l} Al_2O_3-7,5; CaO-16,3;\\ MgO-2,6; MnO-0,1;\\ Na_2O-6,0; K_2O-1,1;\\ TiO_2-0,6; P_2O_5-1,2;\\ TOC-1,5; Stot-0,3;\\ Cl-0,4; W-0,15 \end{array}$	17	25	3,50	10,00	0,0470	0,204	23,00
[8]	$\begin{array}{c} CaO-35,2;\ Fe_2O_3-3,09;\\ SiO_2-11,4;\ MgO-7,54;\\ SO_3-11,4;\ Al_2O_3-3,2;\ \rho-1,875\ \Gamma/CM^3 \end{array}$	4	40	1,50	0,20	0,0470	0,296	15,90
					0,10	0,0400		13,50
					0,30	0,0450		15,20
					0,40	0,0420		14,20
					0,50	0,0390		13,00
					0,60	0,0380		12,80
					0,70	0,0370		12,50

Источ- ник	Состав, %	<i>Р</i> , бар	<i>Т</i> , °С	<i>t</i> , ч	<i>L/S</i> , л/кг	Погл., кг/кг	Пот-ал, кг/кг	CE,%
[9]	$\begin{array}{c} C = 0,018; \text{Si} = 0,06; \\ \text{Fe} = 0,064; \text{Ti} = 0,004; \end{array}$	1	25– 45– 80	030,00	0,03	0,0660	- 0,400	16,50
					0,06	0,0700		17,50
	Al - 0,019; Mn - 0,002;				0,12	0,0920		23,00
	Mg = 0,165; Ca = 0,51;				0,18	0,0840		21,00
	Na - 0,024; K - 0,01;				0,24	0,0620		15,50
	P = 0,001; S = 0,123				0,36	0,0130		3,30
				1120,00	0,03	0,0960		24,00
					0,06	0,1620		40,50
					0,12	0,1850		46,30
					0,18	0,1850		46,30
					0,24	0,1710		42,80
					0,36	0,0530		13,30
[10]	$SiO_2-32,69$; $Fe_2O_3-7,73$; Al ₂ O ₃ -10,49; SO ₃ -2,53; CaO - 38,28; MgO - 2,27; Na ₂ O - 1,12; K ₂ O - 0,99; TiO ₂ -0,58; Cl - 1,04; SO ₄ -2,21	2,5	25	0,87	0,00	0,0230	0,289	8,00

Окончание табл.

Можно сделать вывод, что известные данные носят фрагментарный характер и описывают реализацию частных случаев с разбросом, в конечном результате достигающем 1—2 порядков. Выявление лимитирующей стадии процесса с оптимизацией параметров для приближения фактической эффективности карбонизации золы к теоретической является актуальной задачей.

Список источников

1. Applications of fly ash for CO_2 capture, utilization, and storage / A. Dindi [et al.] // Journal of CO_2 Utilization. 2019. Vol. 29. P. 82–102.

2. Dananjayan R. R. T., Kandasamy P., Andimuthu R. Direct mineral carbonation of coal fly ash for CO_2 sequestration // Journal of Cleaner Production. 2016. Vol. 112. P. 4173–4182.

3. Estimation of CO_2 sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland / A. Uliasz-Bocheńczyk [et al.] // Energy Procedia. 2009. Vol. 1, iss. 1. P. 4873–4879.

4. Comparison of CO_2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash / G. N. Muriithi [et al.] // Journal of Environmental Management. 2013. Vol. 127. P. 212–220.

5. CO_2 sequestration by direct mineralisation using fly ash from Chinese Shenfu coal / L. Ji [et al.] // Fuel Proces. Technol. 2017. Vol. 156 P. 429–437.

6. Evaluation of factors affecting mineral carbonation of CO_2 using coal fly ash in aqueous solutions under ambient conditions / H. Y. Jo [et al.] // Chemical Engineering Journal. 2012. Vol. 183. P. 77–87.

7. Rendek E., Ducom G., Germain P. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash // Journal of Hazard-ous Materials. 2006. Vol. 128, iss. 1. P. 73–79.

8. Ukwattage N. L., Ranjith P. G., Wang S. H. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO_2 by accelerated carbonation // Energy. 2013. Vol. 52. P. 230–236.

9. Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO_2 sequestration / M. Bauer [et al.] // Applied Geochemistry. 2011. Vol. 26, iss. 8. P. 1502–1512.

10. Mazzella A., Errico M., Spiga D. CO_2 uptake capacity of coal fly ash: Influence of pressure and temperature on direct gas-solid carbonation // J. Environ. Chem. Eng. 2016. Vol. 4, Iss. 4. P. 4120–4128.