Моделирование ионного воздействия на металлические системы

Созонова Наталья Михайловна Дроздов Александр Юрьевич

Физико-технический институт Уральского отделения РАН Баянкин Владимир Яковлевич, д.т.н.
Kingdom88@mail.ru

Ионная имплантация широко применяется в различных областях науки как метод модифицирования механических свойств поверхностного слоя твердого тела, но некоторые вопросы до сих пор остаются малоизученными. Актуальными остаются исследования образования и накопления радиационных дефектов, поведения внедренных атомов, эффекта поверхностной сегрегации и влияние короткоживущих некогерентных источников упругих волн. Их изучение является трудной задачей, поскольку при комнатной температуре часть радиационных дефектов отжигается и физическое состояние материала во время и после облучения отличаются. Поэтому наибольший интерес представляют результаты, полученные непосредственно во время ионной имплантации и сразу после ее окончания. Это возможно с помощью компьютерного моделирования ионной имплантации.

Моделирование выполняется с использованием программного пакета LAMMPS [1] и потенциалов погруженного атома (embedded atom method potential) [2, 3] для систем на основе железа. Данное семейство потенциалов позволяет в рамках классической МД точнее описывать характер взаимодействия, свойства и структуру металлов и сплавов по сравнению с парными межатомными потенциалами. При этом обеспечивается хорошее количественное согласие с широким набором экспериментальных данных и первопринципных расчетов, включая постоянную решетки для различных температур, модули упругости, энергии точечных дефектов, температуру плавления, энергию ОЦК-ГЦК перехода, плотность и структурный фактор жидкой фазы. Шаг по времени подбирался для различных энергий ионной имплантации и составлял 10-18 с.

В данной работе с помощью программного пакета LAMMPS создавалась система Fe+Ni, содержащая не более 50000 атомов. Облучение проводилось ионом Ar с энергиями облучения 10-30 кэВ. Далее проводилась стабилизация системы путем релаксации при комнатной температуре. Для анализа исследуемой структуры были построены функции радиального распределения в разные моменты времени. При изучении которых выявлено, что структура решетки изменяется. В результате моделирования было обнаружено, что происходит образование дефектов в структуре моделируемого образца. На границе раздела решетки Ni и решетки Fe происходит образование пор при облучении ионом Ar с энергией 10кэВ, чего не наблюдается при облучении ионом Ar с энергиями 20 кэВ и 30кэВ. Выявлено, что на границе двух металлов формируется переходный слой. Предложенная компьютерная модель является тестовой системой для исследования основных закономерностей формирования структурных неоднородностей в биметаллических образцах.

Список публикаций:

[1] URL: LAMMPS WWW Site: http://lammps.sandia.gov/

[2] Daw M. S., Baskes M. I. // Phys. Rev. B. 1984. V. 29. № 12. P. 6443-6453.

[3] Daw M. S., Baskes M. I. // Phys. Rev. Lett. 1983. V. 50. P. 1285.

Оптические и магнитооптические спектры и электронная структура монокристалла ErAl3(BO₃)₄

Соколов Валерий Владимирович Малаховский Александр Валентинович, Гудим Ирина Анатольевна Институт физики имени Л.В. Киренского КНЦ СО РАН Малаховский Александр Валентинович, д.ф.-м.н. valer963@iph.krasn.ru

 ${
m Er}^{3+}$ - это широко распространенный активный ион используемый в твердотельных лазерах. В частности, генерация лазера была получена в кристалле ${
m YAl_3(BO_3)_4}$ с примесью ${
m Er}$. Алюмобораты ${
m RAl_3(BO_3)_4}$ (${
m R}$ - ${
m Y}$ или редкоземельный (P3) металл) имеют структуру хантита с тригональной пространственной группой ${
m R32}$ (${
m \emph{D_3^7}}$) в высокотемпературной фазе. Среда с высокой концентрацией активных ионов редкоземельных элементов необходима для миниатюрных твердотельных лазеров. Редкоземельные алюмобораты со структурой хантита являются идеальным материалом для этих целей, так как эта структура позволяет вводить P3 ионы с высокой концентрацией вплоть до стехиометрического состава.

Линейно поляризованные (π и σ) спектры поглощения и магнитного кругового дихроизма (МКД) кристалла ErAl₃(BO₃)₄ были измерены при T = 90 К для 11 полос поглощения: ${}^4I_{15/2} \rightarrow {}^4I_{11/2}$, ${}^4I_{9/2}$, ${}^4F_{9/2}$, ${}^4S_{3/2}$, ${}^2H_{11/2}$,

 $^4F_{7/2}$, $^4F_{5/2}$, $^4F_{3/2}$, $^2G_{9/2}$, $^4G_{11/2}$, $^4G_{9/2}+^2K_{15/2}+^2G_{7/2}$. Для анализа спектров были использованы два подхода: 1) с помощью неприводимых представлений локальной точечной группы (D_3 в нашем случае) и 2) в приближении волновых функций | $J_3\pm M_4$, \rangle свободного атома, что возможно в кристаллах с осевой симметрией.

1. Первый подход основан на правилах отбора для π и σ поляризаций:

	$E_{1/2}$	$E_{3/2}$
$E_{1/2}$	π , $\sigma(\alpha)$	$\sigma(\alpha)$
$E_{3/2}$	$\sigma(\alpha)$	π

На основании экспериментально определённых поляризаций переходов и правил отбора были идентифицированы компоненты расщепления основного и возбуждённых состояний в кристаллическом поле. Проблема идентификации переходов и состояний из спектров при $T=90~\rm K$ затруднена, так как ряд уровней основного мультиплета заселяется, и наблюдаются переходы из этих уровней. Тем не менее, эти переходы позволяют найти позиции и симметрии состояний основного мультиплета: 0 ($E_{1/2}$), 46 ($E_{3/2}$), 104 ($E_{1/2}$), 122 ($E_{3/2}$), 160 ($E_{3/2}$), 233 ($E_{1/2}$), 263 ($E_{1/2}$), 293 ($E_{1/2}$) сm⁻¹.Следует отметить, что энергии уровней основного мультиплета, полученные из разных переходов существенно различны. Это означает, что электронный переход влияет на локальные свойства кристалла не только в возбужденном состоянии, но и в исходном состоянии. Впервые были обнаружены вибронные переходы очень большой интенсивности, которые соответствовали электронным переходам из возбуждённых состояний основного мультиплета.

2. Если спектры поглощения и МКД переходов хорошо разрешены (как на рис. 1), то с помощью этих спектров можно найти значения зеемановских расщеплений $\Delta\omega_0$. Расщепление крамерсовых дублетов в магнитном поле, направленном вдоль оси C_3 кристалла, дается выражением $\Delta E = \mu_B g_C H$, где g_C является эффективным фактором Ланде в C_3 -направлении. Таким образом, для переходов между крамерсовыми дублетами $2\hbar\Delta\omega_0 = \mu_B H\Delta g_C$. Здесь Δg_C разница эффективных факторов Ланде g_C состояний, участвующих в переходе, которые таким образом и были найдены из эксперимента.

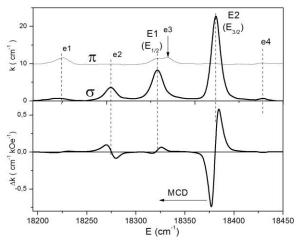


рис. 1. Поглощение (k), МКД (Δk) спектра для перехода $4I15/2 \rightarrow 4S3/2$ при 90~K.

В кристаллах с осевой симметрией электронные состояния можно характеризовать кристаллическим квантовым числом μ . В тригональных кристаллах для состояний с полуцелым моментом J оно имеет значения: $\mu = +1/2, -1/2, 3/2$ (± 3/2). Кроме того, в кристаллах с осевой симметрией электронные состояния могут быть описаны в первом приближении волновыми функциями $|J,\pm M_J\rangle$ свободного атома. Между значениями μ и M_J существует соответствие:

$$M_J = \pm 1/2, \ \pm 3/2, \ \pm 5/2, \ \pm 7/2, \ \pm 9/2, \ \pm 11/2, \ \pm 13/2, \ \pm 15/2$$
 (1)
 $\mu = \pm 1/2, \ (\pm 3/2), \ \mp 1/2, \ \pm 1/2, \ (\pm 3/2), \ \mp 1/2, \ \pm 1/2, \ (\pm 3/2)$

Соотношения (1) характеризуют Крамерсовские дублеты в приближении функций $|J,\pm M_J\rangle$. Правила отбора для числа μ аналогичны правилам отбора для числа M_J в свободных атомах. В частности, для электрического дипольного поглощения:

$$\Delta \mu = \pm 1$$
 соответствует \mp круговой поляризации и σ -поляризованным волнам (2)

Используя соотношения (1) и (2) были рассчитаны теоретические значения Δg_{CM} изменения фактора Ланде при

электронных переходах. Результаты для перехода ${}^4I_{15/2} \rightarrow {}^4S_{3/2}$ показаны в таблице:

Мультиплет	Уровень	E (cm ⁻¹)	Поляр.	Возбужденное состояние	M_J	Δg_{CM}	Δg_C
$^{4}S_{3/2}(E)$	E1	18322	π, σ	$E_{1/2}$	±1/2	-17.6	
	E2	18382	σ	$E_{3/2}$	±3/2	+9.6	+7.14
	e1	18224	π, σ	$E_{1/2}$		+11.2	+7.38
	e2	18274	σ	$E_{1/2}$		-16	-8.33

Хорошее согласие между теоретическими значениями ΔgCM в приближении функций $|J,\pm M_J\rangle$ и экспериментальными ΔgC в полосе E и в некоторых других полосах показывает, что приближение теоретической функции $|J,\pm M_J\rangle$ для переходов близка к реальности, несмотря на сильную легкоплоскостную анизотропию в основном состоянии. Еще раз мы наблюдаем разницу между свойствами кристалла в основном электронном состоянии и локальными свойствами кристалла под действием электронного перехода. Тем не менее, необходимо отметить, что расхождения между значениями ΔgCM и ΔgC имеют место. Это является следствием перемешивания функций $|J,\pm M_J\rangle$ с различными MJ, но равными μ (см. (1)) в кристаллическом поле.

Влияние высокого давления на структуру кристаллов С70

Соколовский Дмитрий Николаевич

Лентяков Владимир Владимирович, Волкова Яна Юрьевна
Уральский федеральный университет им. первого Президента России Б.Н. Ельцина
Бабушкин Алексей Николаевич, д.ф.-м.н.
<u>sokolovskyd1@gmail.com</u>

Электрические, механические и оптические свойства кристаллов фуллеренов демонстрируют широкие перспективы применения этих материалов в электротехнике и оптоэлектронике. Фуллерены в кристаллах характеризуются относительно невысокими энергиями связи, поэтому в фуллеритах уже при комнатной температуре наблюдаются фазовые переходы, приводящие к ориентационному разупорядочению. При высоких давлениях в кристаллах C_{60} и C_{70} наблюдается образование структур твердого углерода с ковалентными связями между атомами различных молекул фуллеренов, как это имеет место в алмазе [1]. Исследованиям этих структурных преобразований на сегодняшний день уделяется достаточно много внимания.

Целью работы было изучение структурных преобразований, происходящих в кристаллах фуллерена C_{70} при высоких давлениях. Кристаллы C_{70} были исследованы методами рентгеновской дифракции и *in situ* спектроскопии комбинационного рассеяния при давлениях до 32,8 ГПа. Эксперименты проводились с использованием камеры высокого давления конструкции Мерилла-Бассета. Образец помещался между алмазными наковальнями с диаметром кулет 250 мкм.

При атмосферном давлении C_{70} кристаллизуется в ГЦК структуру с параметром решетки a=14,89 Å. Когда давление достигает 14 ГПа, большинство дифракционных пиков становятся слишком слабыми для наблюдения. Вероятно, при давлении более 14 ГПа начинается процесс аморфизации кристаллов C_{70} .

На рисунке 1 показаны *in situ* КР спектры кристаллов C_{70} , полученные при комнатной температуре в диапазоне давлений от 5 до 32,8 ГПа. Участок вблизи $\omega = 1332$ см⁻¹ был удален из спектров, т.к. в данной области преобладает сильное колебание, исходящее от алмазных наковален, и его вклад в спектр является доминирующим. При давлениях выше 14 ГПа большинство пиков становятся широкими или слишком слабыми для наблюдения, и только наиболее сильный, широкий пик около 1567 см⁻¹ может отчетливо наблюдаться. При более высоких давлениях до 32,8 ГПа, можно наблюдать только широкую полосу около 1680 см⁻¹, что может быть связано с аморфизацией фуллеренов C_{70} под давлением [2]. В то же время, в области низких частот спектра, записанного при давлении 32,8 ГПа, присутствует характерный для фуллеренов пик с частотой около 410 см⁻¹ (рис. 1). Наличие данного пика, свидетельствует о том, что при давлении порядка 30 ГПа переход фуллеренов в аморфную фазу происходит не полностью. Данное наблюдение находится в хорошем соответствии с ранее проведенными исследованиями, согласно которым аморфная фаза фуллерена C_{70} является обратимой, как минимум при давлениях порядка 31,1 ГПа [3].