

рис.1. Зависимость выходного напряжения от протекающего тока в проводнике

В результате проведенных исследований был разработан экспериментальный образец бесконтактного МЭ датчика тока. Основным преимуществом такого датчика является измерения электрического тока без необходимости разрыва цепи, что делает его перспективным для практического применения.

Список публикаций:

[1] M.I. Bichurin and D. Viehland, Magnetoelectricity in Composites (Pan Stanford Publishing, 2012).

[2] Бичурин М.И., Петров Р.В., Соловьев И.Н., Соловьев А.Н. Исследование магнитоэлектрических сенсоров на основе пьезокерамики ЦТС и Метгласа // Современные проблемы науки и образования. — 2012. — № 1; URL: www.science-education.ru/101-5367

Исследование сдвига и уширения линии ферромагнитного резонанса в слоистой структуре феррит-пьезоэлектрик

Лобекин Вячеслав Николаевич

Новгородский государственный университет имени Ярослава Мудрого Татаренко Александр Сергеевич, к.т.н. <u>slavalobekin@gmail.com</u>

Ферромагнитный резонанс (ФМР), одна из разновидностей электронного магнитного резонанса, проявляется в избирательном поглощении ферромагнетиком энергии электромагнитного поля при частотах, совпадающих с собственными частотами прецессии магнитных моментов электронной системы ферромагнитного образца во внутреннем эффективном магнитном поле $H_{3\varphi}$. ФМР в более узком смысле – возбуждение колебаний типа однородной (во всем объеме образца) прецессии вектора намагниченности J (спиновых волны с волновым вектором k=0), вызываемое магнитным СВЧ-полем H, перпендикулярным постоянному намагничивающему полю H_0 . Для слоистой структуры состава феррит и пьезоэлектрик приложенное электрическое поле и зависимость напряжения от толщины образца приводит к деформации пьезоэлетрика, что приводит к деформации ферромагнитного материала. В результате этого наблюдается сдвиг и уширение линии Φ MP.

В качестве объекта исследования, выбрана слоистая структура феррит-пъезоэлектрик (рис. 1). Образец №1 состоит из пластины пьезоэлектрика ЦТС-13 размерами $5\times5\times0,38$ мм и диска феррита ЖИГ (пленка) диаметром 3 мм и толщиной 0,1 мм. Образец №2 состоит из пластины пьезоэлектрика ЦТС-13 размерами $5\times10\times0,38$ мм и пластины феррита ЖИГ (монокристалл) размерами $13\times4\times0,9$ мм. Феррит жестко связан с пьезоэлектриком.

рис. 1 - Слоистая структура феррит-пьезоэлектрик.

Образец помещался в макет с микрополосковой линией передачи (рис 2). Исследование проводилось с помощью векторного анализатора цепей фирмы Agilent. Также для наблюдения ФМР к образцу прикладывается постоянное магнитное поле с помощью электромагнита фирмы GMW.

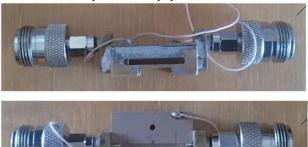


рис. 2 - Макет для проведения исследований.

К пьезоэлектрику было приложено электрическое поле, что позволило в результате исследования получить экспериментальные зависимости сдвига и уширения резонансной кривой ФМР от частоты.

Данные эксперимента представлены на рисунках 3 и 4. На рисунке 3 представлена зависимость сдвига резонансной кривой от частоты с напряженностью электрического поля E=6 кB/см и напряженностью магнитного поля H=3200 Э. На рисунке 4 представлена зависимость уширения резонансной кривой от частоты с напряженностью электрического поля E=6 кB/см и напряженностью магнитного поля H=3300 Э.

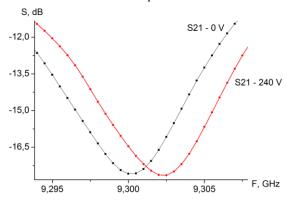


рис.3 - Экспериментальная зависимость сдвига резонансной кривой от частоты образца $N\!el$.

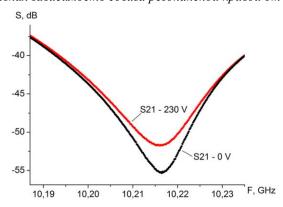


рис. 4 - Экспериментальная зависимость уширения резонансной кривой от частоты образца $N\!\!\!\! \cdot \!\!\! 2.$

В результате проведенных исследований, при E=0 наблюдается ФМР линия. При приложении электрического поля, напряженностью E=6 кВ/см, наблюдается сдвиг (рис. 3) или уширение (рис. 4) резонансной линии. Величина сдвига и уширения линии ФМР зависит от соотношения толщин материалов ЖИГ/ЦТС. В образце №1 наблюдался сдвиг резонансной кривой, который составил 2,75 МГц, при соотношение толщин ЖИГ/ЦТС 0,26. В образце №2 наблюдалось уширение резонансной кривой, которое составило 4,5 МГЦ, при соотношении толщин 2,36. В результате исследований удалось экспериментально установить, что при приложении электрического поля к образцам №1 и №2 наблюдается сдвиг и уширение линии ФМР.

Список публикаций:

[1] Татаренко, А.С. Исследование магнитоэлектрических фильтрующих СВЧ устройств с электрическим управлением на основе слоистых феррит-пьезоэлектрических материалов: автореф. дис. на соиск. учен.степ. к.т.н.: 05.27.01/ Татаренко Александр Сергеевич. – Великий Новгород: 2006., - 122 с.

[2] Гуревич, А.Г. Магнитный резонанс в ферритах и антиферромагнетиках / А.Г. Гуревич. –М: Наука, 1973. – 593 с.

Гистерезисные свойства тонких пленок сплава FeSiCuNbMoB

Михалицына Евгения Александровна

Катаев Василий Анатольевич, Путинцев Александр Данилович
Уральский федеральный университет имени первого президента России Б. Н. Ельцина
Институт естественных наук и математики
Катаев Василий Анатольевич, к.ф.-м.н.

Evgenia.mihalitsyna@urfu.ru

Сплавы системы Fe-Si-Cu-Nb-B, имеющие коммерческое название Finemet, известны своими магнитомягкими свойствам, определяющимися высокими индукцией насыщения и проницаемостью, малыми коэрцитивной силой и магнитными потерями [1]. Указанные свойства сплавов типа Finemet реализуются благодаря особому структурному состоянию, характеризующемуся зернами α-FeSi со средним размером 10 нм, расположенными в аморфной матрице. Магнитная мягкость, в соответствии с моделью случайной анизотропии [2], достигается за счет усреднения локальной анизотропии. В последние десятилетия, наряду с аморфными и нанокристаллическими лентами, внимание привлекли тонкие пленки, которые могут служить подходящей функциональной средой для магнитных датчиков на основе гигантского магнитного импеданса [3].

В данной работе исследованы тонкие пленки сплава $Fe_{72.5}Si_{14.2}Cu_{1.1}Nb_2Mo_{1.5}B_{8.7}$ толщиной от 10 до 200 нм, полученные методом высокочастотного ионно-плазменного распыления. В качестве подложки был использован монокристаллический кремний с предварительно нанесенным слоем SiO_2 толщиной 100 нм. Магнитные свойства были исследованы методами вибрационной магнитометрии и магнитооптической микроскопии на основе эффекта Керра.

На рис. 1 представлены петли гистерезиса для пленок разной толщины в состоянии после получения, измеренные вдоль оси легкого намагничивания на одних и тех же образцах. Целью работы являлось сравнить объемные свойства, полученные магнитометрическим методом, и поверхностные свойства, полученные магнитооптическим методом, который позволяет получать сигнал с нескольких десятков нанометров на поверхности образца.

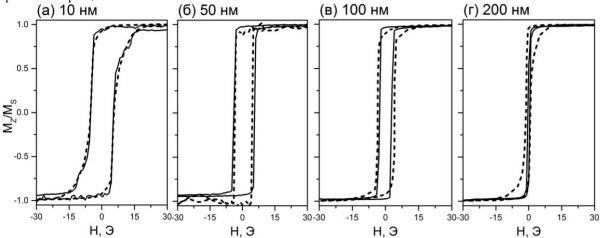


рис.1 Петли гистерезиса пленок толщиной 10 (a), 50 (б), 100 (в) и 200 (г) нм, измеренные с помощью вибрационного магнитометра (сплошная линия) и магнитооптического микроскопа (пунктирная линия).

Для пленок толщиной 10 и 50 нм петли, измеренные разными методами, совпадают. Данные пленки остаются оптически прозрачными до толщины порядка 50 нм. Следовательно, в этом случае сигнал измеряется со всего образца. Для пленок толщиной 100 и 200 нм наблюдается различие в виде петель гистерезиса. Пленки, измеренные магнитооптическим методом, обладают большей коэрцитивной силой и имеют менее прямоугольную форму петли гистерезиса. Вероятно, это связано с влиянием поверхности, которая обладает