индукции радиус Лармора существенно меньше ширины щели. Ширина щели (D) = $5*10^{-3}$ м. $R_{\pi} \ll D$.

Сделаем теоретический расчет. Радиус Лармора для электрона, $R_{\pi} = 10^{-3}$ м. Масса электрона: Me = 9,1*10⁻³¹ кг. При разности потенциалов $\phi = 100$ и заряде $e = 1,6*10^{-19}$ Кл.

$$\frac{m*V^2}{2} = e*\phi \tag{1}$$

$$H = \frac{V * Me}{q * R\pi} \tag{2}$$

Из (1) определяется скорость электрона :V = $0,59*10^7$ м/с . Из (2) — магнитную индукцию, необходимую для такого радиуса: $3,4*10^{-2}$ Тл.

На основе максимального значения магнитной индукции рассчитан радиус Лармора для электрона ($R_{\pi} = 0.23*10^{-4}$ м). При сравнении с теоретическим расчётом видно, что радиус Лармора много меньше теоретического, значит в реальности электрон до столкновения со стенкой ИИ осциллирует, что приводит к росту числа столкновений с молекулами газа. В результате ток ионов растет.

С помощью программы ANSYS проведено моделирование магнитного поля и получены зависимости изменение величины магнитного поля от расстояния от анода до 71 мм, где поле существенно убывает. Произведено сравнение изменения магнитного поля при различных токах в катушке с полученной зависимостью на основе моделирования.

Приборная погрешность прибора Ш1-8 составляет 1,5%, относительная погрешность измерения длины составляла максимум 10% . Погрешность лабораторного источника питания мала в сравнении с погрешностью измерения линейных размеров. Погрешность измерения вольтамперной характеристики обусловлена неидеальностью источников

питания, амперметра, вольтметра, вакуумметра и оценивается в 10%.

Вывод. На основе проведенного исследования, определены оптимальные характеристики параметров ионного источника для синтеза нанопленок гидрогенизированного углерода.

Список публикаций:

[1] Доцент Жданов А.В "Методы получения наноструктурированных покрытий в машиностроении"

[2]Доцент Жданов А.В "Методы нанесения вакуумных PVD-покрытий"

[3]В.А. Столбовой, С.С. Фурсов, И.С. Зуйко "Подготовка поверхности подложек перед нанесением вакуумно-дуговых покрытий бомбардировкой ионами титана и циркония". Национальный научный центр «Харьковский физикотехнический институт». Харьковский национальный университет им. В.Н. Каразина. 2011

Регулировка выходного напряжения импульсного наносекундного высоковольтного генератора

Чепусов Александр Сергеевич

Корженевский Сергей Романович, Комарский Александр Александрович, Титов Владимир Николаевич Институт электрофизики Уральского отделения Российской академии наук chepusov@iep.uran.ru

Одна из важнейших сфер применения высоковольтной импульсной техники – генерация мощных потоков излучения, в частности СВЧ и рентгеновского излучения. Импульсные генераторы характеризуются следующими преимуществами по сравнению с источниками постоянного высокого напряжения: компактность,

высокая импульсная мощность. Главным же недостатком является отсутствие возможности регулировки уровня напряжения, что вынуждает разрабатывать уникальные установки для каждой задачи.

В лаборатории импульсных источников излучения ИЭФ УрО РАН разработан способ регулировки напряжения импульсного наносекундного высоковольтного генератора с индуктивным накопителем энергии и твердотельной системой коммутации. Принципиальная схема устройства изображена на рис. 1.

рис. 1. Электрическая схема генератора с двумя звеньями магнитного сжатия

Реализация регулировки уровня напряжения в данном источнике возможна за счет особенностей работы полупроводникового прерывателя тока, SOS-диода [1], в последнем контуре схемы. Амплитуда выходного импульса при использовании индуктивного накопителя определяется выражением

$$U = L \cdot \frac{dI}{dt},\tag{1}$$

где U – напряжение, L – индуктивность вторичной обмотки трансформатора, dI/dt – скорость обрыва тока. Из двух параметров при сохранении конструкции можем менять только скорость обрыва. В SOS-диодах она зависит от амплитуды обрываемого тока, а она в свою очередь определяется уровнем заряда первичных конденсаторов C2. Таким образом, подключая схему генератора к сети через ЛАТР, регулируя напряжение (и соответственно заряд) на конденсаторах C2 мы получаем возможность изменять амплитуду импульса напряжения на нагрузке. Результаты, полученные в результате такой регулировки, показаны на рис. 2.

рис. 2. Регулировка выходного напряжения импульсного генератора: а – осциллограмма импульса напряжения на нагрузке (амплитуда 85,5 кВ) и тока прерывателя (амплитуда 158 А) при зарядке накопителей первичного контура до 520 В; б – осциллограмма импульса напряжения на нагрузке (амплитуда 112,4 кВ) и тока прерывателя (амплитуда 207 А) при зарядке накопителей первичного контура до 600 В; в – зависимость амплитуды напряжения на выходе от напряжения первичного накопителя

Результаты исследований позволяют разрабатывать на базе данной технологии компактные, рентгеновские аппараты с изменяемой энергией излучения для решения широкого круга задач.

Список публикаций:

[1] Дарзнек С.А., Любутин С.К., Рукин С.Н., Словиковский Б.Г., Цыранов С.Н. // Электротехника. 1999. № 4. С. 20-28.