Изотропная и анизотропная дифракция когерентного света на периодически поляризованных доменных структурах в кристалле ниобата лития

<u>А.Е. Мандель¹</u>, Е.Н. Савченков¹, С.М. Шандаров¹, М.В. Бородин¹, С.В. Смирнов¹, А.Р. Ахматханов^{2,3}, В.Я. Шур^{2,3}

¹Томский государственный университет систем управления и радиоэлектроники, 634050, Томск, Россия a_e_mandel@mai.ru

²Институт естественных наук и математики, Уральский федеральный университет, 620000 Екатеринбург, Россия

³ООО «Лабфер», 620014, Екатеринбург, Россия

Мы сообщаем об экспериментальных исследованиях и численном анализе изотропной и анизотропной брэгговской дифракции когерентного светового пучка ($\lambda = 655$ нм), распространяющегося через периодически поляризованную доменную структуру с пространственным периодом $\Lambda = 8,79$ мкм, образованную в кристалле MgO:LiNbO₃.

Isotropic and anisotropic diffraction of coherent light on periodically poled domain structures in the lithium niobate crystal

<u>A.E. Mandel¹</u>, E.N. Savchenkov¹, S.M. Shandarov¹, M.V. Borodin¹, S.V. Smirnov¹, A.R. Akhmatkhanov^{2,3}, V.Ya. Shur^{2,3}

¹ Tomsk State University of Control Systems and Radioelectronics, 634050, Tomsk, Russia ²School of Natural Sciences and Mathematics, Ural Federal University, 620000, Ekaterinburg, Russia ³Labfer Ltd., 620014, Ekaterinburg, Russia

We report on experimental investigations and numerical analysis of isotropic and anisotropic Bragg diffraction for the coherent light beam ($\lambda = 655$ nm) propagating through the periodically poled domain structure with the spatial period $\Lambda = 8.79$ µm formed in a MgO:LiNbO₃ crystal by the electric reversal method.

Дифракция света на периодически поляризованных доменных структурах (ППДС) в сегнетоэлектрических кристаллах является эффективным неразрушающим методом контроля их характеристик и контроля качества [1,2]. В отсутствие внешнего приложенного электрического поля такая дифракция обусловлена возмущениями оптических свойств кристалла доменными стенками [1,3,4]. В рамках известной модели распределения поляризации в доменной стенке [5], в работе [3] получены выражения для создаваемых ею возмущений компонент тензора диэлектрической непроницаемости в кристаллах симметрии 3m. Из них следует возможность реализации, наряду с изотропным типом, коллинеарного и анизотропного видов дифракции на ППДС. Экспериментально коллинеарная дифракция наблюдалась на ППДС с пространственным периодом $\Lambda = 6.89$ мкм в кристалле LiNbO₃:5% MgO [3].

В настоящей работе рассмотрены особенности изотропной и анизотропной брэгговской дифракции когерентного светового пучка, распространяющегося в плоскости ХҮ кристалла ниобата лития, в котором методом электрической переполяризации создана ППДС с пространственным периодом $\Lambda = 8.79$ мкм.

В экспериментах по исследованию дифракции света использовался образец ППДС, изготовленный в ООО ЛАБФЕР в монокристаллической пластине LiNbO₃:5% MgO методом переполяризации во внешнем электрическом поле. Пластина имела размеры $40 \times 2 \times 1$ мм³ вдоль осей X, Y и Z соответственно. Период доменной структуры имел значение $\Lambda = 8,79$ мкм, а доменные стенки были перпендикулярны оси X кристалла и

параллельны плоскости YZ. Доменная структура полностью занимала пространство между гранями образца перпендикулярно оси Y (d = 2 мм) и оси X (L = 40 мм).

Результаты экспериментов по измерению эффективности дифракции Брэгга из обыкновенного (индекс "o") или необыкновенного (индекс "e") светового пучка с длиной волны $\lambda = 655$ нм на составляющих Фурье-спектра возмущений оптических свойств с пространственными частотами $2\pi p/\Lambda$ (p = 1, 2, 3, ...), в дифрагированный пучок соответствующей поляризации, представлены в Таблице 1.

Таблица 1. Эффективность брэгговской дифракции для световых пучков, распространяющихся в плоскости ХҮ кристалла

*										
	р	1	2	3	4	5	6	7	8	
	η ₀₀ ×100	0.219	0.526	0.113	0.028	0.045	0.010	0.003	0.002	
	$\eta_{ee} \times 100$	0.743	7.170	1.273	0.447	0.513	0.064	0.063	0.022	
	$\eta_{oe} \times 100$	_	_	-	0.102	0.023	0.025	0.006	0.002	
	$\eta_{eo} \times 100$	_	-	-	0.130	0.022	0.030	0.017	0.004	

Как следует из Таблицы 1, интенсивность максимумов нечетных порядков при изотропной брэгговской дифракции отлична от нуля, а ее максимальная эффективность наблюдается для вторых порядков ($p = \pm 2$). Эти особенности могут быть обусловлены тем, что созданные при синтезе ППДС две периодические системы стенок с поляризацией, изменяющейся вдоль координаты x с $-P_S$ на P_S и с P_S на $-P_S$, могут иметь пространственный сдвиг, отличающийся от половины периода $\Lambda/2$ на некоторую величину Δx [4].

Сопоставление теоретической зависимости эффективности анизотропной дифракции от ее порядка *p* с приведенными в Таблице 1 экспериментальными данными показало, что основной вклад в нее вносят возмущения компонент $\Delta \varepsilon_{23} = \Delta \varepsilon_{32}$ тензора диэлектрической проницаемости, создаваемые ППДС за счет эффектов электрострикции и фотоупругости [3].

Работа выполнена при поддержке Минобрнауки РФ в рамках Госзадания на 2017-2019 г.г. (№. 3.8898.2017/8.9, 3.4993.2017/6.7, 3.4973.2017/7.8), РФФИ (грант № 16-29-14046-оfi_m) и Правительства РФ (акт 211, соглашение 02.А03.21.0006).

- 1. A.L Aleksandrovskii, O.A Gliko, I.I. Naumova, V.I. Pryalkin, Quant. Electron. 27, 641(1996).
- 2. M. Müller, E. Soergel, K. Buse, C. Langrock, M.M. Fejer, J. Appl. Phys 97, 044102 (2005).
- 3. S.M. Shandarov, A.E. Mandel, S.V. Smirnov, T.M. Akylbaev, M.V. Borodin, A.R. Akhmatkhanov, V.Ya. Shur, *Ferroelectrics* **496**, 134 (2016).
- 4. S.M. Shandarov, A.E. Mandel, A.V. Andrianova, G.I. Bolshanin, M.V Borodin, A.Yu. Kim, S.V. Smirnov, A.R. Akhmatkhanov, V.Ya. Shur, *Ferroelectrics* **508**, 49 (2017).
- 5. V.A. Zhirnov Soviet Physics Jetp-USSR 8, 822(1959).