измерения в области высоких частот невозможно ввиду ограничения возможности прибора. Осциллирующее напряжение выбиралось исходя из того, что нелинейность в высших гармониках начинает проявляться при напряжениях от 1 В и в данной работе составляло U = 3 В. Измерения проводились в нематической и изотропной фазах ЖК, при температурах 25 °C и 80 °C (*puc.2*).

рис.2. Спектры действительной (а) и мнимой (б) части диэлектрической проницаемости 3-ей гармоники нематической фазы и изотропной фазы жидкого кристалла в планарной ячейке.

Из графиков видно, что в области низких частот, около 1 мГц, спектры комплексной диэлектрической проницаемости в изотропной фазе ЖК выше, чем в нематической фазе, что связанно с повышением подвижности примесных ионов в жидком кристалле с повышением температуры.

Таким образом, нелинейные спектры комплексной диэлектрической проницаемости нематической фазы жидкого кристалла в низкочастотной области содержат только нечетные гармоники. Присутствие нечетных гармоник свидетельствует о зависимости ионных процессов от полярности приложенного электрического поля. Основным отличием спектров комплексной диэлектрической проницаемости высших гармоник изотропной фазы от нематической фазы, является присутствие в изотропной фазе четных гармоник.

Список публикаций:

[1] Guo Q. et al. Ferroelectric Liquid Crystals: Physics and Applications //Crystals. - 2019. - T. 9. - No. 9. - C. 470.

[2] Larsen T. T. et al. Optical devices based on liquid crystal photonic bandgap fibres //Optics Express. $-2003. - T. 11. - N_{\odot}. 20. - C. 2589-2596.$

[3] Gin D.L., Noble R. D. Designing the next generation of chemical separation membranes //Science. – 2011. – T. 332. – №. 6030. – C. 674-676.

[4] Henmi M. et al. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions //Advanced Materials. -2012. -T. 24. -N: 17. -C. 2238-2241.

[5] Podgornov F. V. et al. Mechanism of electrooptic switching time enhancement in ferroelectric liquid crystal/gold nanoparticles dispersion //Liquid Crystals. $-2018. -T. 45. -N_{\odot}. 11. -C. 1594-1602.$

[6] Perkowski P. Dielectric spectroscopy of liquid crystals. Theoretical model of ITO electrodes influence on dielectric measurements //Opto-Electronics Review. $-2009. - T. 17. - N_{2}. 2. - C. 180-186.$

Влияние модифицирования $CdNb_2O_6$ на фазообразование твердых растворов $Pb(Ti_{0.5}Zr_{0.5})O_3$

Глазунова Екатерина Викторовна Южный федеральный университет Вербенко Илья Александрович, д.ф.-м.н. kate93g@mail.ru

Стремление к универсальности функциональных материалов приводит к необходимости совмещения в одной химической композиции нескольких материалов, имеющих различную, структуру и свойства.

В данной работе нами изучены процессы фазообразования в квазибинарной системе твердых растворов (TP), в которую входят Pb(Ti_{0.5}Zt_{0.5})O₃, обладающий высокими значениями диэлектрических $\varepsilon_{33}^{T}/\varepsilon_{0} = (2000-2300)$ и электромеханических $K_{p} = (0.550-0.569)$ характеристик, имеющий структуру типа перовскита[1], а также CdNb2O6, обладающий очень высокими значениями диэлектрической проницаемости и кристаллизующийся в структуре пирохлора [2].

Как известно, для образования TP элементы, входящие в их состав должны удовлетворять условиям изоморфизма: разность ионных радиусов (ΔR) не должна превышать 15 % и разность электроотрицательностей

(Δ ЭО) должна быть не больше 0.4 по Полингу [3]. Если эти эти условия не выполняются, то возможна только ограниченная растворимость. Так, например, в системе (*1-x*) NaNbO₃-*x* LiNbO₃, несмотря на большую разницу в ионных радиусах (Δ R (Na-Li)=44%, Δ ЭО(Na-Li)=0.05) Li растворяется в NaNbO₃ до *x*=0.14. В изучаемой системе (1-*x*)Pb(Ti_{0.5}Zr_{0.5})O₃-*x*CdNb₂O₆ условия изоморфизма выглядят следующим образом : для *A*- катионов Δ R(Pb-Cd)=27 %, а Δ ЭО(Pb- Cd)=0.64, что превышает допустимый предел почти в два раза. Для *B*-катионов Δ R(Ti -Nb)= 3 %, Δ R(Zr -Nb)= 24 %, а Δ ЭО (Ti -Nb)= 0.06, Δ ЭО (Zr -Nb)=0.27. Из приведенных данных видно, что основной конфликт возникает при замещении в А-позиции, что говорит о том, в данной системе также возможна только ограниченная растворимость.

Исходя из вышесказанного, целью данной работы является установление закономерностей фазообразования и выявление границы растворимости в TP системы (1-*x*)Pb(Ti_{0.5}Zr_{0.5})O₃-*x*CdNb₂O₆.

Объекты, и методы получения Объектами исследования стали TP системы $((1-x)Pb(Ti_{0.5}Zr_{0.5})O_3 - xCdNb_2O_6$, где $0.025 \le x \le 0.10$. Все образцы получали методом твердофазных реакций при $T_{1,2} = 950$ °C и времени выдержки $\tau = 4$ ч. Спекание проводили по обычной керамической технологии 1200 °C $\le T_{cn.} \le 1220$ °C. В качестве исходных реагентов использовали PbO (ч), TiO₂ (осч), ZrO₂ (ч), Nb₂O₅ (ч), (ч), CdO (ч).

Рентгенографические исследования проводили методом порошковой дифракции на дифрактометре ДРОН-3 с использованием $Co_{K_{\infty}}$ – излучения. Содержание примесных фаз оценивалось по относительным интенсивностям соответствующих им сильных линий, I/I₁, где I-интенсивность линии примесной фазы, I₁-интенсивность сильной линии соответствующего TP₁

На рисунке приведены рентгенограммы TP системы $(1-x)Pb(Ti_{0.5}Zr_{0.5})O_3-xCdNb_2O_6$ после синтеза.

рис. Рентгенограммы TP системы $(1-x)Pb(Ti_{0.5}Zr_{0.5})O_3-xCdNb_2O_6 c \ 0.025 \le x \le 0.2$ после синтеза $T_1 = 950^{\circ}C$ (ромбом отмечены дифракционные отражения относящиеся к пирохлорной фазе).

Из рисунка видно, что после синтеза образцы с $x \le 0.1$ имеют структуру типа перовскита и не содержат примесных фаз. Но уже при концентрации Cd-содержащего компонента $x \ge 0.2$ однородные TP не возникают и образуется смесь пирохлорной и перовскитной фаз, что говорит о том, что действительно, при получении TP системы (1-x)Pb(Ti_{0.5}Zr_{0.5})O₃-xCdNb₂O₆ проявляется ограниченная растворимость до 10 мол. %..

Таким образом, в ходе работы в виде керамики были получены TP в интервале $0.025 \le x \le 0.1$ с относительной плотностью 90-95%. В работе также обсуждаются структурные параметры, полученных TP, их зависимость от концентрации компонента x, а также влияние CdNb₂O₆ на диэлектрические и пьезоэлектрические свойства исследуемых объектов.

На базе полученных данных делается заключение о возможности использования рассматриваемых ТР как основы для создания пьезоэлектрических устройств.

Работа выполняется в рамках гранта РФФИ № 19-32-90099\19 в лаборатории интеллектуальных материалов, плазменных технологий и инновационных мультифункциональных систем НИИ физики, при использовании оборудования Центра коллективного пользования «Электромагнитные, электромеханические и тепловые свойства твердых тел» НИИ физики Южного федерального университета.

Список публикаций:

[1] Hongyan Qi, Xin Xia, Changlin Zhou, Pengcheng Xiao, Yun Wang, Yongju Deng. Ferroelectric properties of the flexible Pb(Zr0.52Ti0.48)O3 thin film on mica // Journal of Materials Science: Materials in Electronics. 2020. V. 31. № 4. PP. 3042–3047.

[2] Yu-Jen Hsiao, Te-Hua Fang, Liang-Wen Ji and Sung-Shui Chi. Surface and Photoluminescence Characteristics of CdNb2O6 Nanocrystals // The Open Surface Science Journal. 2009. № 1. P.30-33.

[3] Урусов В. С., Теоретическая кристаллохимия. – М.: Изд-во МГУ, 1987. 275 с.