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Abstract. For one class of nonlinear wave equations with a small parameter, an initial-boundary value problem with zero boundary
conditions is considered. The solution of such a problem is constructed with using series with recurrently calculated coefficients
in two ways. In the first case, the method of special series is considered, which is based on the choice of some functions (basic
functions), by the powers of these functions the solution of the original problem is presented into a series with recurrently calculated
coefficients. In the other case to represent solutions of the problem a combination of Fourier and small parameter methods is used.
It is shown that both proposed constructions of series with recurrently calculated coefficients converge to the solution of the initial-
boundary value problem on a finite time interval.

INTRODUCTION

There are various analytical methods for representing solutions of partial differential equations (PDE) by R. Courant
[1], G.F. Duff [2], D. Ludwig [3], V.M. Babich [4]. In this paper an approach to construct solutions of PDE is closer to
the approach of solving ordinary differential equations (ODE). The ideas to represent solutions of nonlinear ODE as
a power series with respect to functions defined sequentially from another equations was considered by, for example,
A.M. Lyapunov [5] and N.P. Yerugin [6]. In this case series with recurrently computed coefficients are also obtained.

Method of special series [7, 8, 9] is an analytical method of representation of solutions of nonlinear PDE in the
form of series by the powers of one [8, 10, 11] or several functions [12, 13, 14, 15] chosen in a special way, which
allow the series coefficients to be calculated recurrently without applying any truncation procedures. In contrast to
the power Taylor series, which converge only for Cauchy–Kovalevskaya equations under the conditions of analyticity
of the problem initial conditions, the constructed series can converge for wider classes of differential equations and
systems.

This choice of functions allows one to find the coefficients of the series recurrently. These functions we will call
basic functions. In some cases it is possible to prove global convergence of the constructed series in unlimited domains
[16, 17, 18], where the numerical methods are hard to be used.

A theorem on the local convergence on time variable of the series to the solution of the initial-boundary value
problem is proved for a wide class of nonlinear wave equations [8, 12, 19]. Note that in some cases the combination
of Galerkin method and the expansions of the solution by the powers of a small parameter also leads to recurrent con-
struction of the coefficients of the expansions of the solution into a series [20, 21], that allows to prove convergence of
the series. The method of special series has been successfully applied to representation of solutions for Lin-Reissner-
Tsien equation [22, 23, 24, 25], describing transonic gas flows. In some cases, special series are terminated and exact
solutions are obtained [18, 26, 27, 28]. Sometimes, on the basis of an exact solution, it is possible to construct a
new class of solution for a nonlinear filtration equation [29], for which solutions also exist in the form of series with
recurrently calculated coefficients [30, 31, 32, 33].
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The basic functions can also contain an arbitrary function [34], which can be used in proving the existence of a
solution of the initial-boundary value problem for nonlinear PDE [35, 36].

In this paper, we consider the representation of solutions of an initial-boundary value problem with zero boundary
conditions for a certain class of nonlinear wave equations in the form of a convergent double series and we compare
this solution with the solution obtained by Fourier method.

METHOD OF SPECIAL SERIES FOR REPRESENTATION OF SOLUTIONS OF
NONLINEAR WAVE EQUATION WITH ZERO BOUNDARY CONDITIONS

Following [17, 19, 37], let consider an approach to construction of solutions of nonlinear PDE in the form of special
series.

Consider the method of special series for constructing solutions for following nonlinear wave equation of two
independent variables t and x:

utt = F(t, u, ux, uxx), (1)

where F is a polynomial of the unknown function u(x, t) and the derivatives ux, uxx. The coefficients of this polynomial
are continuous and bounded functions for t ≥ 0.

Consider the following double series:

u(x, t) =
∞∑

i, j=0

αi j(t)Pi(x)Qj(x). (2)

Let the functions P(x) and Q(x) satisfy the system of ODE

P′ = a10P + a01Q + a20P2 + a11PQ + a02Q2 + . . . = W1(P,Q),

Q′ = b01Q + b20P2 + b11PQ + b20P2 + . . . = W2(P,Q).
(3)

Here ai j = const, bi j = const, i, j ≥ 0 and the functions W1(P,Q), W2(P,Q) are analytical with the conditions
W1(0, 0) = W2(0, 0) = ∂W2(0, 0)/∂P = 0.

The following assertion is valid [37].

Assertion 1. There exist the coefficients αi j(t), such that the duble series (2), (3) is a formal solution of equation
(1).

This assertion 1 is proved due to constructing the coefficients αi j(t) by substituting series (2) into equation (1),
differentiation, and multiplication of the series with taking into account relations (3). Then, equating expressions with
the same powers of Pi(x), Q j(x) the series coefficients αi j(t) are found from a sequence of ODE. The equation for the
free term α00(t) of the series may be nonlinear. Note that the recurrence of obtaining the coefficient of the series is
achieved by a special form of the linear part of system (3).

The following numbering function for the sequence of calculation of coefficients αi j(t) is used:

c(m, n) = m +
1

2
(m + n)(m + n + 1).

According to this function, αpr(t) will have been calculated before αmn(t), if c(p, r) < c(m, n).
Thus c(0, 0) = 0, c(1, 0) = 0, c(0, 1) = 0, . . . Therefore, the coefficients of the series will be calculated as follows:

α00(t), α10(t), α01(t), . . .
We consider method of special series [8, 37] for representation of solutions of initial-boundary value problem for

following class of nonlinear wave equation:

utt = uxx + uxx

⎛⎜⎜⎜⎜⎜⎜⎝
K1∑

m=1

γ2mu2m +

K2∑
m=1

βmu2m
x

⎞⎟⎟⎟⎟⎟⎟⎠ +
K3∑

m+n=1

ω2m+1,nu2m+1um
x , γ2m, βm, ω2m+1,n = const (4)

with initial data
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 ≤ x ≤ 1 (5)
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and boundary conditions

u(0, t) = u(1, t) = 0, t ≥ 0. (6)

Consider a special case of system (3)

P′ =
∑

m+2n≤N−1

am,2n+1PmQ2n+1,

Q′ =
∑

m+2n≤N

bm,2nPmQ2n
(7)

and a special case of series (2)

u(x, t) =
∞∑

i=0

∞∑
2 j+1=1

αi j(t)Pi(x)Q2 j+1(x). (8)

The following assertion is valid.

Assertion 2. The double series (8), (7) is a formal solution of Cauchy problem (4)–(5), if initial data (5) have the
following form:

uν(x) =

∞∑
i, j=0

ανi,2 j+1Pi(x)Q2 j+1(x), ανi,2 j+1 = const, ν = 0, 1. (9)

Proof. This assertion is verified by substituting series (2) into equation (4), differentiation, and multiplication of
the series with taking into account relations (7). The coefficients αi j(t) of series (8) will be calculated recurently from
linear ODE

α′′i j = Ri j(t, αpr), (10)

in which the right sides Ri j(t, αpr) of equations (10) are determined by the form of the right side of equation (4) and the
right side of system (7). The coefficients αpr are calculated earlier, than the coefficients αi j, since for the corresponding
numbering functions relation c(p, r) < c(i, j) is true.

The identities are valid

αi,2m(t) ≡ 0, t ≥ 0, i,m = 0, 1, . . . (11)

The proof of these identities (11) is based on an analysis of the parity of the second indices of the coefficients αpr
included in the right-hand side of the equation (10). In this case, the index r is always either even, or the coefficients
with even second indices are factors in members containing odds with odd second indices. This fact is easy to check
using the form of system (4). Therefore, if at the initial moment αi,2m(0) = 0, α′i,2m(0) = 0, then for t > 0 αi,2m(t) ≡ 0.

Thus, series (2), which is used to solve equation (4) does not include terms with coefficients for which the second
indices are even. Therefore, series (2) coincides with series (8).

Consequently double series (8), (7) is a formal solution of Cauchy problem (4)–(5).

The following theorem is valid.
Theorem 1. Let the following conditions are satisfied:

1) basic functions P(x), Q(x) satisfy system of differential equations (7);
2) |P(x)| ≤ 1, |Q(x)| ≤ 1 for all x;
3) P(0) � 0, Q(0) = Q(1) = 0;
4) initial data (5) are presented in the form of series (9) and the following inequalities are valid:

|α(ν)
i j | ≤

M exp[−(i + j)]
3(i + 1)4( j + 1)4

, ν = 0, 1, i, j ≥ 0, M = const.

Then a solution of initial-boundary value problem (4)–(6) is represented in the form of the series (8), (7) in domain
G = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T1}, T1 > 0.

Proof. Series (8), (7) is a special case of series (2). But series (8), (7) can also be used to solve initial-boundary
value problem (4)–(6), because it contains multiplier Q(x), with condition 3 of Theorem 1 Q(0) = Q(1) = 0.
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Taking into account Assertion 2 we can calculate the coefficients of series (8), (7) from second order linear ODE
(10).

By the method of mathematical induction, taking into account that the solutions of equations (10) have the form

αi j(t) =
∫ t

0

∫ τ
0

Ri j(σ, upr)dσdτ + α(1)
i j t + α(0)

i j ,

we prove the following inequalities:

|αpr(t)| ≤ M exp[−q(p + r)t]
(p + 1)4(r + 1)4

, 0 ≤ t ≤ (qN)−1, q = const, p, r ≥ 0. (12)

Inequalities (12) are proved similarly [16].
Using inequality (12), we can estimate series (8), (7) and the series corresponding to partial derivatives ux, uxx,

ut, utt.

Example of basic functions (7). Consider functions

P(x) = cos πx, Q(x) = sin πx. (13)

These functions satisfy all conditions of Theorem 1. System (7) has the form

P′ = −πQ(P2 + Q2),

Q′ = πP(P2 + Q2).

(14)

In system (14) we used the equality P2 + Q2 ≡ 1, which allows us to find the coefficients of series (8) from a
sequence of second order ODE.

JUSTIFICATION OF FOURIER METHOD FOR NONLINEAR WAVE EQUATIONS

Consider a special case of a nonlinear wave equation with small parameter ε

utt = uxx + ε

K∑
k=1

(
bku2k+1 + akuxxuk

x

)
, ak, bk = const. (15)

Let initial data (5) for equation (15) has the form

uν(x) =

J∑
j=1

ανj sin(π jx), ανj = const, ν = 0, 1 (16)

and boundary conditions are (6).
We find the solution of problem (15), (5), (6) in the form

u(x, t) =
N∑

s=1

zs(ε, t)Xs(x) + v(ε, t, x,N), (17)

where Xs(x) = sin πsx, N ≥ J. If we substitute (17) into (15) and equate the expressions in front of identical Xs(x),

s = 1,N, we obtain the system of nonlinear ODE for the coefficients zs(ε, t)

z′′i = −ω2n
i zi + εPi(z1, . . . , zN), ωi = πi

z′i(0) = α1
i , zi(0) = α0

i , i = 1,N.
(18)

In the following this system is called the leading system. Function v(ε, t, x,N) satisfies the following equation:
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vtt=vxx + ε

⎛⎜⎜⎜⎜⎜⎝ f (x, v, vx, vxx)+

m1∑
s=N+1

Ps(z1, . . ., zN)Xs(x)

⎞⎟⎟⎟⎟⎟⎠ , (19)

but with the zero initial and boundary conditions

v(x, 0) = vt(x, 0) = 0, (20)

v(0, t) = v(1, t) = 0, t ≥ 0. (21)

Here number m1, polynomials f (x, v, vx, vxx), Ps(z1, . . ., zN), s = N + 1,m1 are determined by equation (15) and the
number N in (17).

We find a solution of initial-boundary value problem (19)–(21) in the form of a power series of ε

v(x, t) =
∞∑

i=1

εivi(x, t, ε). (22)

Here the functions vi depend on ε, since the functions z j, j = 1,N, wich are a solution of the leading system (17) also
depend on ε.

If we substitute (22) into (19), we obtain the linear non-uniform equations for the functions vi(x, t, ε)

∂2vi

∂t2
− ∂

2vi

∂x2
= Fi(t, x, v1, . . . , vi−1), (23)

vi(x, 0) =
∂vi(x, 0)

∂t
= 0, (24)

vi(0, t) = vi(1, t) = 0, t ≥ 0. (25)

For i = 1 we have

F1 =

m1∑
j=N+1

Pj(z1, . . . , zN)Xj.

We may find the solution of problem (23)–(25) in the form of the sums

vi =

mi∑
j=1

qi j(t, ε)Xj, i ≥ 1,

where mi = [(r f − 1)i+ 1]N + N0, r f is the degree of the polynomials Ps(z1, . . . , zN), the number N0 ≥ 0 is determined
by function f , and the coefficients qi j are determined successively as solutions of linear ODE.

Thus, we can rewrite the solution of problem (15)–(17) in the form of the series

u(x, t) =
N∑

i=1

zi(ε, t)Xi +

∞∑
i=1

εi
mi∑
j=1

qi j(t, ε)Xj. (26)

We investigate convergence of series (26) to the solution of problem (15)–(17). The following theorems are valid.

Theorem 2. Let the initial data ανi satisfy the conditions

|α0
i |≤

M
ω4

i

, |α1
i |≤

M
i3
, i=1,N, M≥0,

|ak |+|bk |≤M1, M1 ≥ 0

and |ε|≤ε0( f ,M,M1). Then the solutions of the corresponding leading systems (18) are bounded for all t ≥ 0.

To prove the boundedness of the solutions zi of the corresponding leading systems (18), Lyapunov functions are
constructed for any N. We can estimate the functions zi, if |ε|≤ε0( f ,M,M1)
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|zi| ≤ M
ω4

i

, |żi| ≤ M
i3
, i = 1,N, t ≥ 0. (27)

Theorem 3. When the conditions of Theorem 2 are satisfied series (26) uniformly converges to the solution of
initial-boundary value problem (15), (5), (6), (16) for all 0 ≤ x ≤ 1 and 0 ≤ t ≤ T (T ∼ ε−1).

If we use the method of mathematical induction and estimates (27), we can evaluate the functions qi j as follows

|qi j| ≤ Miti

N2i2ω4
j

, i ≥ 1, j = 1,mi. (28)

The estimates (27), (28) allow us to prove that series (26) converges to the solution of the initial-boundary value
problem (15), (5), (6), (16) for all 0 ≤ x ≤ 1 and 0 ≤ t ≤ T (T = (Mε)−1).

Remark. The additional function v are estimated as follows

|v(ε, t, x,N)| ≤ 1

N2
εt
(
1 + εt

)
C, C = const.

NUMERICAL RESULTS

We consider an equation which describes nonlinear vibrations of a string

utt = uxx(1 + εu2
x) (29)

with fixed endpoints

u(0, t) = u(π, t) = 0, t ≥ 0 (30)

and initial data

u(x, 0) = u0(x), ut(x, 0) = 0. (31)

We find the solution of problem (29)–(31) in the form of the finite Fourier series

u(t, x) =

N∑
i=1

zi(t) sin(ix) (32)

and in the form of double series (8) with the functions P(x)= cos x, Q(x)= sin x

u(t, x) =

∞∑
i=0

∞∑
2 j+1=1

αi,2 j+1(t) cosi x sin2 j+1 x. (33)

We obtain equations for zi(t) (αi j(t)) by substituting finite sums (32) and series (33) into equation (29) and equate
the multipliers of the same functions.

For the coefficients zi(t) we get a nonlinear system of equation of the form (18). For N = 4 this system is as
follows:

z′′1 (t)=−
[
z1(t)π2+επ4

(
1
4
z3

1
+ 3

4
z2

1z3+2z1z2
2+4z1z2z4+

9
2
z1z2

3+8z1z2
4+3z2

2z3+12z2z3z4

)]
,

z′′2 (t)=−
[
4z2(t)π2+επ4

(
2z2

1z2+2z2
1z4+6z1z2z3+12z1z3z4+4z3

2
+18z2z2

3+32z2z2
4+18z2

3z4

)]
,

z′′3 (t)=−
[
9z3(t)π2+επ4

(
1
4
z3

1
+ 9

2
z2

1z3+3z1z2
2+12z1z2z4+18z2

2z3+36z2z3z4+
81
4

z3
3
+72z3z2

4

)]
,

z′′4 (t)=−
[
16z4(t)π2+επ4

(
2z2

1z2+8z2
1z4+12z1z2z3+32z2

2z4+18z2z2
3+72z2

3z4+64z3
4

)]
.

Here zi = zi(t), i = 1, 4.
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We obtain equations for the coefficients αi j(t) of the series (33) by substituting the series into (29) and applying

the equality sin2 x + cos2 x ≡ 1. As a result we get the sequence of linear ODE from which we recurrently compute
the coefficients αi j(t)

α′′00(t) = −α00(t),
α′′10(t) = −4α10(t),
α′′01(t) = −3α01(t),
α′′20(t) = −7α20(t) − εα3

00
(t),

α′′11(t) = −10α11(t) + 2εα2
00(t)α10(t),

α′′02(t) = −5α02(t) − εα2
10(t)α00(t),

α′′30(t) = −10α30(t) − 6εα2
00(t)α10(t),

α′′21(t) = −17α21(t)+2α20(t)+6α01(t)−ε[α2
00(t)
(
9α10(t)+4α20(t)

)
+10α00(t)α2

10(t)],
. . . .

0
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FIGURE 1. u(0, x) = sin x, t = 2π
5

.

–0.6
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–0.1

0
0.5 1 1.5 2 2.5 3

(2)

(1) –0.4

–0.3

–0.2
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0.5 1 1.5 2 2.5 3
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(2)

FIGURE 2. u(0, x) = 1
2

sin x + 1
2

sin 2x. The solutions at the time moments: t1 =
5π
6

(left), t2 =
2π
3

(right).

In Figures 1–2 the results of numerical solutions of initial-boundary value problem (29)–(31) with ε = 0.1 are
presented. The solutions are computed in the form of a finite Fourier series (32) with N = 6 and in the form of the
special series (33).

Figure 1 shows the solutions at t = 2π
5

. In the figure (1) and (2) denote the finite special series (33) and the finite
Fourier series (32), respectively. The solutions computed by implicit finite difference method and solution computed
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by Fourier method differ imperceptibly.
Figure 2 shows the solutions at t = 5π

6
and t = 2π

3
. In the figure (1) and (2) denote the finite sum of series (33) and

the finite Fourier series (32), respectively. The third line between (1) and (2) is the solution computed by an implicit
finite difference method. In this case the special series is more close to the finite difference solution than the Fourier
series.

CONCLUSION

Thus, it is shown that with the help of special double series we can construct some classes of solutions for initial-
boundary value problem for nonlinear wave equations. Classes of nonlinear wave equations with a small parame-
ter were described, for which it is possible to justify the applicability of Fourier method. The results of numerical
calculations showed that the method of special series and Fourier method can be used to represent the solution of
initial-boundary value problem for nonlinear wave equations.
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