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Abstract. In this investigation, extremal routing problems oriented to engineering applications are considered. These applications
can be associated with dismantling of radioactive sources under accidents at nuclear power plants and with control of sheet cutting
on CNC machines. Issues related to construction of optimal processes are investigated, including the choice of starting point,
regular succession of tasks, and determination of concrete trajectories. To solve this problem, a nonstandard variant of dynamic
programming is used. Precedence conditions play an important role in issues of reducing computational complexity. A theoretical
procedure is implemented in the form of an algorithm and a standard program for a PC and a supercomputer. Model problems
oriented to the above-mentioned engineering applications are resolved.

INTRODUCTION

Routing problems arise in various elds of human activity. We are limited to some engineering applications for which
sequential traversal problems arise. We keep in mind the dismantling problem in nuclear power and control problem
under sheet cutting on CNCmachines. Certainly, the natural prototype of our problem is the known traveling salesman
problem (TSP); see [1–3]. However, essential quality features arise; namely, the natural setting of our problem
contains constraints and complicated cost functions. Now, we note [4–6]. Serious formalization is required. Moreover,
it is required to use advanced mathematical methods. We focus on widely understood dynamic programming (DP).
The very general procedure of DP for routing problems was considered in [7, 8]. In this connection, we note the
studies [9, 10] devoted to TSP. Our scheme is a wide development of [9]. A more speci c variant of DP application
is implemented in [11] devoted to studying issues related to dismantling of radioactive sources. Certainly, many other
methods are used in TSP and in problems of the TSP type; now we note only a widely known branch and a bound
method (see [12]).

THE MEGACITIES MODEL IN ROUTING PROBLEMS

Now, we consider a general model associated with visiting for nonempty nite sets called megacities. In this model,
we implement the system of multivariate movements with choice of the regular succession. Fix two nonempty sets X
and X0; suppose that X0 is a nite set and X0 ⊂ X . Let N ∈ N

�
= {1;2; ...} (hereinafter �= is an equality by de nition).

Let N ≥ 2. We x pairwise disjoint nonempty nite sets M1, ...,MN termed megacities; let Mj ⊂ X and X0∩Mj = ∅

under j ∈ 1,N �
= {k ∈ N|k ≤ N}. Elements of X0 are used as possible starting points and megacities M1, ...,MN are

visiting objects. The next setting corresponds to [13]. We use designations of [13] recalling only a few. Thus, we
consider the process [13](1), whereM1, ...,MN are nonempty relations: M j ⊂Mj×Mj under j ∈ 1,N.We denote by
P the (nonempty nite) set of all permutations of the set 1,N. Then, process [13](1) is reduced to the scheme

(z0 = (x,x)) −→ z1 ∈ Mα(1) −→ ... −→ zN ∈ Mα(N), (1)

where x ∈ X0 and α ∈ P. Moreover, the choice of α ∈ P must satisfy to precedence conditions. Namely, a set
K, K⊂ 1,N×1,N, is xed; we suppose that Condition 2.2.1 in [7] is ful lled. Then [7] (Part 2)

A �
= { α ∈ P| ∀t1 ∈ 1,N ∀t2 ∈ 1,N ((α(t1),α(t2)) ∈K) =⇒ (t1 < t2)} �= ∅. (2)
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The elements of A are called routes admissible by precedence. We must use only routes of (2) as variants of regular
succession choice. However, we must introduce trajectories coordinated with these routes.
For every ordered pair (OP) h, we denote the rst and the second elements of h by pr1(h) and pr2(h) respectively.

We introduce (see [13]) the sets M j
�
= { pr1(z) : z ∈ M j} and M j

�
= { pr2(z) : z ∈ M j}, where j ∈ 1,N. Then (as

in [13]), we denote by M the union of all sets M j, j ∈ 1,N. Analogously, by M we denote the union of all sets
M j, j ∈ 1,N. NaturallyM andM are nonempty nite sets. Let X �

= M∪X0 and X �
= X0∪M. ThenM j ⊂ M j×M j

under j ∈ 1,N. Therefore, by (1) we can consider X×X as phase space of process (1). In this connection, by Z we
denote the set of all mappings from 0,N �

= {0}∪ 1,N into X×X. As in [13], we suppose that Zα [x] is the set of all
trajectories coordinated with α ∈ P and starting from point x ∈ X0 : Zα [x] is the set of all processions (zt)t∈0,N ∈ Z

for which z0 = (x,x) and (see (1)) zt ∈ Mα(t) ∀t ∈ 1,N. Certainly, under α ∈ P and x ∈ X0, in the form of Zα [x], we

obtain a nonempty nite set. As in [13], we suppose that D̃[x] �
= {(α,(zt)t∈0,N) ∈ A×Z|(zt)t∈0,N) ∈ Zα [x]} is the set

of all admissible solutions (α,(zt)t∈0,N) starting from x. Moreover, we use D from [13] as the set of all admissible

solutions of our complete problem (see [13]). Now, we introduce R+
�
= {t ∈ R|0 ≤ t}, where R is real line, and by

R+[T ]we denote the set of all functions from a nonempty set T intoR+ (therefore,R+[T ] is the set of all nonnegative
real-valued functions on T ). LetN be the family of all nonempty subsets of 1,N and

c ∈ R+[X×X×N], c1 ∈ R+[M1×N], ...,cN ∈ R+[MN×N], f ∈ R+[M]. (3)

In connection with c1, ...,cN , we recall that, under x1 ∈ X , x2 ∈ X , and K̃ ∈ N, by [14] (Ch. 1) (x1,x2, K̃)
�
=

((x1,x2), K̃); therefore for j ∈ 1,N, z ∈ M j, and K ∈ N, we have the representation c j(z,K) = c j(pr1(z),pr2(z),K).

We use N0
�
= N∪{0} and p,q �

= {k ∈ N0|(p≤ k)&(k ≤ q)} ∀p ∈ N0 ∀q ∈ N0. Using (1) and (3), we suppose that

Cα [(zt)t∈0,N ]
�
=

N

∑
t=1

[c(pr2(zt−1),pr1(zt),{α(k) : k ∈ t,N})+ cα(t)(zt ,{α(k) : k ∈ t,N})]+ f (pr2(zN)),

where α ∈ P and (zt)t∈0,N ∈ Zα [x] under x ∈ X0. Then, under x ∈ X0, in the form

Cα [(zt)t∈0,N ] −→min, (α,(zt)t∈0,N) ∈ D̃[x], (4)

we obtain the natural x-problem of routing with extremum V [x] (see [13]) and the nonempty set

(sol)[x] �
= {(α0,(z0t )t∈0,N) ∈ D̃[x]|Cα0 [(z

0
t )t∈0,N ] =V [x]} (5)

of optimal solutions. Moreover, we consider the complete routing problem

Cα [(zt)t∈0,N ] −→min, (α,(zt)t∈0,N ,x) ∈ D, (6)

with extremum V and the nonempty set SOL �
= {(α0,(z0t )t∈0,N ,x0) ∈ D|Cα0 [(z0t )t∈0,N ] = V}.Moreover, we have the

natural problem of the starting point optimization

V [x] −→min, x ∈ X0 (7)

with extremum V and the set X0opt
�
= {x0 ∈ X0|V [x0] = V} �= ∅ of optimal starting points (we recall the de nition of

D in [13]). The following property is obvious. Namely, let, under x ∈ X0opt,

(sol)[x] �
= {(α,(zt)t∈0,N ,x) : ((α,(zt)t∈0,N) ∈ (sol)[x]}. (8)

Proposition 1. The set SOL of all optimal solutions of the complete routing problem coincides with the union of
all sets (sol)[x], x ∈ X0opt.
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DYNAMIC PROGRAMMING

In the following, we use the DP procedure of [13] (moreover, see [5, 6]). In this connection, we note that some
variations of (3) with respect to [13] are unessential. By [13], we introduce the families C , C1, ...,CN elements of
which are essential lists. Naturally, CN is a singleton {1,N} and (Ci)i∈1,N is a partition of the family C . In terms of
(Ci)i∈1,N , we de ne (see [5, 6, 13]) the sets D0, ...,DN the elements of which are OP (x,K), where x ∈ X and K is
a subset of 1,N. Thus, D0, ...,DN are sets in the position space (we recall the rule [6] (p.1963)). Next, we construct
the functions v0 ∈ R+[D0], v1 ∈ R+[D1], ...,vN ∈ R+[DN ], for which the recurrence procedure [13] ((5)) is used. In
addition, v0 is de ned by f ; vN(x,1,N) = V [x] ∀x ∈ X0. We recall that, for s ∈ 1,N, the transformation vs−1 to vs is
de ned by [6] (Proposition 4.1). We determine V as the least of all numbers vN(x,1,N), x ∈ X0. This calculation
completes construction of the Bellman function layers (in this connection, we note that v0, v1, ...,vN are restrictions
of the uniform Bellman function to the sets D0, D1, ...,DN respectively).

CONSTRUCTION OF OPTIMAL SOLUTION

Thus, we have already built the functions v0, v1, ....,vN and found the value V.Moreover, we choose x0 ∈ X0 such that
vN(x0,1,N) = V. Now, we consider the optimal solution construction. Here, we note that x0 is a solution of problem
(7): x0 ∈ X0opt. Now, we suppose that z(0) �

= (x0,x0). Then, V [x0] = V. Therefore, by [6] ((4.12))

V = min
j∈I(1,N)

min
z∈M j

[c(x0,pr1(z),1,N)+ c j(z,1,N)+ vN−1(pr2(z),1,N \{ j})], (9)

where I : N−→N is de ned by [6] ((3.9)), moreover, see [7] (Part 2). Using (9), we nd η1 ∈ I(1,N) and z(1) ∈ Mη1
such that

V = c(x0,pr1(z
(1)),1,N)+ cη1(z

(1),1,N)+ vN−1(pr2(z
(1)),1,N \{η1}); (10)

see [6] ((4.13)). We use the property (x0,1,N) ∈ DN . Then (see [6] (Section 4)) (pr2(z(1)),1,N \ {η1}) ∈ DN−1.
Therefore [6] (Section4)

vN−1(pr2(z(1)),1,N \{η1}) = min
j∈I(1,N\{η1})

min
z∈M j

[c(pr2(z(1)),pr1(z),1,N \{η1})
+ c j(z,1,N \{η1})+ vN−2(pr2(z),1,N \{η1; j})].

(11)

Using (11), we choose η2 ∈ I(1,N \{η1}) and z(2) ∈ Mη2 for which

vN−1(pr2(z(1)),1,N \{η1})
= c(pr2(z(1)),pr1(z(2)),1,N \{η1})+ cη2(z

(2),1,N \{η1})+ vN−2(pr2(z(2)),1,N \{η1;η2}). (12)

In addition, (pr2(z(2)),1,N \ {η1;η2}) ∈ DN−2. Later, operations similar to (10) and (12) should continue up to the
exhaustion of the set 1,N. Then, for η �

= (ηi)i∈1,N we have the property: (η ,(z(i))i∈0,N) ∈ (sol)[x0] is obtained.
Obviously, (η ,(z(i))i∈0,N ,x0) ∈ (sol)[x0]. Then, by Proposition 1

(η ,(z(i))i∈0,N ,x0) ∈ SOL. (13)

Now, we recall basic steps of procedure implementation (13).
1) Construction the Bellman function layers v0, v1, ...,vN .
2) Finding global extremum V and the optimal starting point x0 ∈ X0opt.
3) Constructing (13) by a step-by-step procedure (see (10),(12)).
We note that for building only V and x0 ∈ X0opt, the next scheme modi cation can be implemented.
1’) Construction vN with overwriting functions-layers v1, ...,vN . In this case, we use [6] (Proposition4.1) for deter-

mination of the transformation vs−1 −→ vs under s ∈ 1,N. If s< N, then, after this transformation, the value array for
vs−1 is destroyed; it is replaced by the value array for the constructed function vs. So, in computer memory, only one
of the Bellman function layers is situated.
2’) Minimization of values of the function vN for determination V and x0 ∈ X0opt.
The employment of V and x0 can be associated with heuristic testing in the case of the large dimension of our

problem.
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OPTIMIZING MULTI-INSERTIONS IN PROBLEMS OF LARGE DIMENSION

For routing problems with large dimension ( rst of all, under high value N), serious dif culties associated with
computing implementation of DP arise, although the structure of the optimal solution is clear (see previous section).
A critical dif culty is connected with memory resource (of course, some decrease of computing complexity is attained
by applying the procedure with construction only Bellman function layers v0, v1, ...,vN but not the entire array of
Bellman function; these decrease is realized in the problem with precedence conditions). Nevertheless, in routing
problem of large dimension, the use of heuristics inevitably. However, in this case, we can use DP for optimization
“in window". Now, we note only one variant of such a procedure using a substantial way of reasoning (more detailed
construstions are reduced in [15]). We consider optimizing multi-insertions for given “window" system. It is supposed
that we have some admissible heuristic solution (it is supposed here that the starting point is xed). Such a solution
can be found by greedy algorithm. It is supposed that the number of megacities is suf ciently large. In the index set,
we form some disjoint “window" system obtaining a procession of fragments. In these fragments, we realize local DP
procedures. In addition, global precedence conditions generate a system of local precedence conditions. Moreover,
the “global" cost functions (see (3)) with dependence on the task lists generate a system of local cost functions with
similar dependence. Optimization procedures for our multi-insertion are implemented by a parallel algorithm for a
supercomputer (see [15]; program of A.M. Grigoryev).

CONCLUSION

A model problem oriented to dismantling of radioactive sources under accidents at nuclear power plants has been
considered. The used cost functions are de ned by integration of instantaneous radiation actions (nonlinear functions).
A variant with N = 255 has been considered. It is supposed that megacities are 30-element sets. The case when the
size of every window is 20 was used. The number of “windows" is 13. The original result has been improved by
15.8%. The computation time was 25 min 55 sec.
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