
algorithms

Article

Branching Densities of Cube-Free and Square-Free Words

Elena A. Petrova and Arseny M. Shur *

����������
�������

Citation: Petrova, E.A.; Shur, A.M.

Branching Densities of Cube-Free and

Square-Free Words. Algorithms 2021,

14, 126. https://doi.org/10.3390/

a14040126

Academic Editor: Sebastian Maneth

Received: 25 March 2021

Accepted: 18 April 2021

Published: 20 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Algebra and Fundamental Informatics, Ural Federal University, 620075 Yekaterinburg, Russia;
elena.petrova@urfu.ru
* Correspondence: arseny.shur@urfu.ru

Abstract: Binary cube-free language and ternary square-free language are two “canonical” represen-
tatives of a wide class of languages defined by avoidance properties. Each of these two languages
can be viewed as an infinite binary tree reflecting the prefix order of its elements. We study how
“homogenious” these trees are, analysing the following parameter: the density of branching nodes
along infinite paths. We present combinatorial results and an efficient search algorithm, which
together allowed us to get the following numerical results for the cube-free language: the minimal
density of branching points is between 3509/9120 ≈ 0.38476 and 13/29 ≈ 0.44828, and the maximal
density is between 0.72 and 67/93 ≈ 0.72043. We also prove the lower bound 223/868 ≈ 0.25691 on
the density of branching points in the tree of the ternary square-free language.
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1. Introduction

A formal language, which is a subset of the set of all finite words over some (usually
finite) alphabets, is one of the most common objects in discrete mathematics and computer
science. Languages are often defined by properties of their elements, and many “good”
properties are hereditary—all factors (=contiguous subwords) of a word with such a
property also possesses this property. Typical hereditary properties are “to be a factor of
a certain infinite word” or “to contain no factors from a given set”. A factorial language
forms posets under some natural order relations; the relation “to be a prefix of” is probably
the simplest relation of this sort. The diagram of this relation is called a prefix tree; the
structure of this tree reflects the properties of the language. For example, the prefix tree of
a language L can be viewed as a deterministic (finite or infinite) automaton accepting L:
each edge has the form (w, wa) and is labeled by the letter a, the root is the initial state, all
nodes are final states.

An important class of factorial languages is constituted by power-free languages. Any
language of this class contains no factors from the set of α-powers for a certain integer or
rational α; an α-power of a nonempty word u is the prefix of an infinite word uuu · · · of
length dα|u|e, where |u| stands for the length of u. Power-free languages are studied in
hundreds of papers starting with the seminal work by Thue [1], but the topic still contains
a number of challenging open problems. One group of problems concerns the structure of
prefix trees of infinite power-free languages. Let us briefly recall the related known results.
In the following text, the subtree of a prefix tree means a tree consisting of some node w
and all its descendants.

For infinite power-free languages, there is a natural partition into “small” and “big” [2–8]:
in binary languages avoiding small powers (up to 7/3), the number of words grows only
polynomially with length, while all other infinite power-free languages are conjectured to
have exponential growth. This conjecture has been proved [4–8] for almost all power-free
languages (up to a finite number of cases). Polynomial-size binary power-free languages
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possess several distinctive properties (see, e.g., [9] Section 2.2); all properties stem from a close
relation of all words from these languages to a single infinite word, called the Thue–Morse
word [10]. Among these languages, the overlap-free language, avoiding all α-powers with α > 2,
attracted the most attention; as a result, it is studied very well. For example, the asymptotic
order of growth for this language is computed exactly [11,12]. Further, it is decidable whether
a subtree of the prefix tree, rooted at a given word w, is finite or infinite [13]. Moreover,
the results of [14] imply that the depth of a finite subtree can be computed in time linear in
|w|, and the isomorphism of two given subtrees can be decided in linear time also. Most of
the results about the overlap-free language can be extended, with additional and sometimes
tedious technicalities, to all small binary power-free languages (see, e.g., [4]).

The knowledge about “big” power-free languages is rather limited. For all these
languages, any subtree has at least one leaf [15]. Further, for any fixed alphabet and
fixed integer α, it is decidable whether a given word generates finite or infinite subtrees,
and every infinite subtree often branches out infinitely [16,17]. All other results concern two
particular languages: the binary 3-free (cube-free) language CF and the ternary 2-free (square-
free) language SF. These two languages are the most interesting “test cases”, the analysis
of which was initiated by Thue [1]. Note that the prefix tree of SF is binary in spite of
the ternary alphabet, because a square-free word has no factors of the form aa. For the
prefix tree of SF, it is known that (a) finite subtrees of arbitrary depth exist and can be
built efficiently [18], (b) in any infinite path, the fraction of nodes with two children is at
least 2/9 [19], and (c) if a node of depth n has a single descendant of depth n + m, then
m = O(log n) [19]. If we take the tree consisting of all infinite branches of the original
prefix tree, then the analog of (c) with the bound m = O(n2/3) is known [20,21]. For the
prefix tree of CF, the property (a) was proved in [22]. The properties (b) (with the constant
23/78) and (c) were proved in [23].

In this paper, we study the branching of prefix trees, continuing the line of research
related to the property (b). Most of our results are about the language CF. By branching
point, we mean a node of the prefix tree with two children. Branching density of an infinite
path w is the limit of the ratios between the numbers of branching points in prefixes of w
and lengths of these prefixes; if no limit exists, we consider lower/upper density as the
corresponding lim inf / lim sup. Speaking about lower/upper bounds for density, we mean
lower bounds for lower density and upper bounds for upper density. Our contribution is
as follows:

• We establish the lower bound 3509/9120 ≈ 0.38476 on the branching density in
the prefix tree of CF (Theorem 3) and the lower bound 223/868 ≈ 0.25691 on the
branching density in the prefix tree of SF (Theorem 4), significantly improving the
bounds from [19,23];

• We construct infinite paths in the prefix tree of CF with the branching density as small
as 13/29 ≈ 0.44828 (Theorem 5);

• We establish the upper bound 67/93 ≈ 0.72043 on the branching density in the
prefix tree of CF and construct infinite paths, with the branching density as big as
18/25 = 0.72 (Theorem 6).

Let us comment on the results. The proof of each of the lower bounds consists of two
parts: one is purely combinatorial, while the other requires a computer search. For the
cube-free language, we significantly improve the combinatorial part (Theorem 1) over the
paper [23], correcting, on the way, an error in the technical statement [23] (Theorem 7); as
to the search part, we present an efficient (quadratic) algorithm replacing an exponential
algorithm of [23]. There is a chance that the new bound can be slightly improved if more
computational resources will be used. We also use the same search algorithm to improve
the bound for the square-free language; the combinatorial part, presented in [19], is much
simpler than for the cube-free case, and we see no way to improve it.

As a byproduct of the search algorithm, we find “building blocks” to construct an
infinite path with small branching density. We call it small because it is smaller than
the fraction of branching points at the nth level of the tree for each n that is big enough.
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(See Section 4.2 for the details.) Finally, a separate combinatorial argument allows us to
obtain an upper bound on the branching density for the cube-free case and present an
example which is very close to this bound.

After preliminaries, we state and prove the results in Sections 3–5. In Section 3, we
prove Theorem 1, which constitutes the combinatorial part of Theorem 3. The tools for
the search part are described in Section 4.1. Section 4.2 presents the results of the search,
Theorems 3 and 4, and a short discussion. Section 4.3 is devoted to Theorem 5. Finally,
Section 5 contains Theorem 6 and its proof.

2. Preliminaries

We study words and languages over the binary alphabet {a, b} (apart from Section 4.2,
where the result over a ternary alphabet is also presented), writing λ for the empty word
and |w| for the length of a finite word w. If w = xyz for some words x, y, and z (any of
which can be empty), then x, y, z are, respectively, a prefix, a factor, and a suffix of w. We
write y ⊆ w to indicate that y is a factor of w. The set of all finite (nonempty finite, infinite)
words over an alphabet Σ is denoted by Σ∗ (resp., Σ+, Σ∞). Elements of Σ+ (Σ∞) are treated
as functions w : {1, . . . , n} → Σ (resp., w : N→ Σ). We write [i..j] for the range i, i+1, . . . , j
of positive integers; the notation w[i..j] stands for the factor of the word w occupying this
range, as well as for the particular occurrence of this factor in w; w[i..i] = w[i] is just the ith
letter of w. A factor w[i..j] is internal if i > 1 and j < |w|. By position of a factor, we mean its
starting (=leftmost) position. The distance between factors of a word is the difference of
their positions; for example, the distance between occurrences of aa in aabaa is 3. A cyclic
shift of a finite word w is any word w[i..|w|]w[1..i−1]. The complement of a finite or infinite
word w is the image of w under the map which replaces all a’s by b’s and all b’s by a’s.

A word w has period p < |w| if w[1..|w|−p] = w[p+1..|w|]. We use two basic properties
of periodic words (see, e.g., [24]).

Lemma 1 (Lyndon, Schützenberger; [25]). If uv = vw 6= λ, then there are words x 6= λ, y and
an integer n such that u = xy, w = yx and v = (xy)nx.

Lemma 2 (Fine, Wilf; [26]). If a word u has periods p and q and |u| ≥ p + q− gcd(p, q), then u
has period gcd(p, q).

The prefix tree of a language L is a directed tree, whose set of nodes is the set of all
prefixes of words from L, and the set of edges consists of all pairs (u, uc) such that c is a
letter. Edges are labelled by the last letter of the destination node: u c−→ uc. The only node
having no incoming edges, and thus the root of the tree, is λ. A prefix tree is (in)finite
whenever L is (in)finite. A finite prefix tree is often considered as a finite automaton and
called trie.

A cube is a nonempty word of the form uuu. A word is cube-free if it has no cubes
as factors; a cube is minimal if it contains no other cubes as factors. A p-cube is a minimal
cube with the minimal period p (i.e., |u| = p). Other important repetitions include squares
(words of the form uu) and overlaps (words having a period strictly smaller than half of
their length).

The language CF of binary cube-free words is infinite and can be represented by its
prefix tree T , in which the nodes are precisely all cube-free words. The label of every path
from the root coincides, as a word, with the terminal node of this path. A node in T is
either a leaf (infinite paths contain no leaves), or has a single child (fixed node; its outgoing
edge, the letter labeling this edge, and the position of this letter in the label of the path are
also called fixed), or has two children (branching point; the outgoing edges, and their labels
and positions are called free). A fragment of T is shown in Figure 1.
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Figure 1. A fragment of the prefix tree of the binary cube-free language CF. Branching nodes and free
edges are green, while fixed nodes and fixed edges are red. Nodes can be restored from the labels
of paths.

To estimate the number of branching nodes in a path, we obtain bounds on the number
of fixed positions/letters in the corresponding word. Assume that some position i in a
cube-free word w is fixed; w.l.o.g., w[i] = a. Then the word w[1..i−1]b ends with a (unique)
p-cube; in this case, we say that i (or w[i]) is fixed by a p-cube. We assume that some constant
h is chosen (we will choose it later) and we partition fixed positions in words into two
groups: those fixed by “small” p-cubes with p < h and those fixed by “big” p-cubes with
p ≥ h. To get the lower bound on the branching density, we establish separate upper
bounds on the numbers of positions fixed by small and big cubes. All other results involve
small cubes only.

3. Positions Fixed by Big Cubes

The aim of this section is to prove the following upper bound on the density of
positions fixed by big cubes in a cube-free word.

Theorem 1. For any integer h ≥ 2 and any infinite cube-free word w, the density of positions
fixed by cubes with periods ≥ h in w is at most 6

5h .

Theorem 1 is based on the following result, describing the restrictions on the cubes of
similar length fixing closely located letters.

Theorem 2. Suppose that t, l ≥ 1, p, q ≥ 2 are integers, w is a word of length t+l such that
w[1..t+l−1] is cube-free, the position t is fixed by a p-cube, and w ends with a q-cube. Then q is
outside the red zone in Figure 2.

. . .

0 l

q

p 2p 3p 4p

p
2

p

2p

p
3

q = (l+p)/2 q = l/2

q = (l+p)/3q = p

q = l
q = l − p

( p
2 ;

p
2

)

( 2p
5 ; 3p

5

)

(2p; p)

( 8p
3 ; 5p

3

)
(4p; 2p)

q = (l+2p)/3

I

II

III

IV

Figure 2. The restrictions on fixed positions in a cube-free word. If t is fixed by a p-cube and (t+l)
is fixed by a q-cube, then q (as a function of l with parameter p) must be outside the red polygon,
including red border lines. The cases q > 2p and q < p/2 are not considered.

Remark 1. Theorem 2 and Figure 2 improve and correct their earlier analogs, Theorem 7 and
Figure 1 of [23]. The improvement can be seen as a few additional red patches in Figure 2 w.r.t.
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to ([23] Figure 1), and the correction is that the triangle with vertices (2p, p), (4p, 2p), and (5p, 2p)
in ([23] Figure 1) should have been painted in green. This error does not affect the proofs of the
main results of [23]: in those proofs, only a part of the red area is used. This part is drawn
in ([23] Figure 8) and is strictly inside the red area in our Figure 2. Thus, in [23], only Theorem 7
and Remark 8 are (partially) incorrect.

Remark 2. We believe that the boundary of the red area in Figure 2 is exact for p/2 ≤ q ≤ 2p,
and so the result of Theorem 2 is optimal. We do not prove this claim, because it is not important for
the aims of this paper. To substantiate the claim, we provide Table 1 with the examples of the words
w corresponding to green points in the corners of the boundary in Figure 2.

Table 1. Example words w with the pair (l, q) in the green corner of the red zone boundary in Figure 2.
One can take X = abbaab or a longer overlap-free word of similar structure.

Point Word w (PPP′ is boldboldbold, QQQ is underlined)

l = p/2
q = p/2 · · · b Xb Xa Xb XaXb Xa Xb XaXb Xa Xb Xa Xb XbXb XbXb Xb Xb

l = 2p/5
q = 3p/5 · · · b Xb Xb Xa Xb Xa Xb Xb XaXb Xb Xa Xb Xa Xb Xb XaXb Xb Xa Xb Xa Xb Xb Xa Xb Xa Xb Xb Xa Xb XbXb Xa Xb Xb Xa Xb XbXb Xa Xb Xb Xa Xb Xb Xa Xb

l = 2p
q = p · · · b Xa XaXa XaXa Xa XbXbXb Xb Xb

l = 8p/3
q = 5p/3 · · · b Xb XaXb XaXb Xa Xa Xb Xa Xa Xb Xa XbXa Xb Xa Xa Xb Xa XbXa Xb Xa Xa Xb Xa Xb Xa Xa Xb Xa Xb Xa Xa Xb

l = 4p
q = 2p · · · b XaXaXa Xa XbXa XbXa Xb Xa Xb Xa Xb

Proof of Theorem 2. Let P = w[t−3p+1..t−2p], P′ = w[t−p+1..t]. Then, w[t−3p+1..t] =
PPP′. W.l.o.g. P ends with a; so w[t− 2p] = w[t− p] = a, w[t] = P′[p] = b. We write QQQ
for the q-cube, which is a suffix of w. We begin with a few observations.

O1. If q = p/2, the condition w[t− p] 6= w[t] implies that the suffix QQQ of w does
not contain w[t − p]. Hence, l ≥ 3q − p = p/2, giving us the red segment of the line
q = p/2 in Figure 2. To get the red parts of the lines q = p and q = 2p, note that for q = p,
the same argument gives l ≥ 2p, and for q = 2p, the condition w[t− 2p] 6= w[t] implies
l ≥ 4p. From now on, we assume p/2 < q < 2p and q 6= p.

O2. Let i be the bigger of the positions of PPP′ and QQQ in w and consider the
factor w[i..t−1], having both periods p and q. If its length t − i is big enough to apply
Lemma 2, the words P, Q are integral powers of shorter words, contradicting the condition
that w[1..t+l−1] is cube-free. Thus, Lemma 2 must be inapplicable, giving us t − i <
p + q − gcd(p, q) ≤ 3p − 2 (recall that q < 2p). Hence, the position of QQQ in w is
bigger than the position of PPP′, implying QQQ = w[i..t+l], so that 3q = t + l − i + 1 <
l + 1 + p + q− gcd(p, q). From this, l > 2q− p, meaning that all green points with q < 2p
are strictly below the line q = l+p

2 shown in Figure 2.
O3. If the factor w[i..t−1] considered in O2 is shorter than max{p, q}, then we are

unable to restrict q: the p-periodic factor PPP′ and the q-periodic suffix QQQ have too
short an overlap to “interact” inside w. Recall that t− i = 3q− l − 1, so all are strictly
above the lines q = l+p

3 and q = l
2 in Figure 2.

Thus, to prove the theorem, it remains to justify the colouring of the stripe between
the line q = l+p

2 and the broken line {q = l+p
3 ; q = l

2} in Figure 2. We split this stripe into
zones I–IV by the lines q = l, q = p, and q = l+2p

3 . The arguments for all zones are very
similar, so we provide maximum details for zone I and more concise proofs for zones II–IV.

Zone I: q > l+2p
3 . Together with q < 2p (O1) and 2q < l + p (O2), this gives the mutual

location of the suffix QQQ and factor PPP′ of w, as depicted in Figure 3. Equal letters
denote equal factors; note that x 6= λ since 2q < l + p and z 6= λ, since q < 2p.



Algorithms 2021, 14, 126 6 of 19

x x xz z zy y ya a b
P P

Q Q

P ′

Figure 3. Location of factors of w for Zone I: q >
l+2p

3 , q < 2p, 2q < l + p. The leftmost Q consists of
a suffix of P, followed by P and a prefix of P; P = xzya is partitioned accordingly.

The words y, zy, and yaxz are prefixes of Q (Figure 3). By the length argument, y is a
prefix of zy, which is a prefix of yaxz. Then zyaxz ⊆ PP (Figure 3) implies zzy ⊆ PP. Since
PP is cube-free, zzz 6⊆ PP, and thus z is not a prefix of y. Since z and y are both prefixes of
Q, we have z = yz′, z′ 6= λ. Further, yaxyaxz ⊆ QQ (Q begins with yaxz and ends with
yax) but (yax)3 6⊆ QQ, because QQ is cube-free. Then, the fact that z and yax are both
prefixes of Q implies that z = yz′ is a proper prefix of yax, so ax = z′x′, x′ 6= λ. Now
compare zy = yz′y against yaxz = yz′x′yz′. We see that y is a proper prefix of x′y by the
length argument. By Lemma 1 we can write x′ = f g, y = ( f g)n f for some words f , g; note
that n ≤ 1 since x′y is cube-free. If n = 1, we have

Q = yaxzyax = yz′x′yz′yz′x′ = f g f z′ f g f g f z′ f g f z′ f g, and then

( f g f z′ f g)3 ⊆ QQ = f g f z′ f g f g f z′ f g f z′ f g f g f z′ f g f g f z′ f gf g f z′ f g f g f z′ f g f g f z′ f gf g f z′ f g f g f z′ f g f g f z′ f g f z′ f g.

However, QQ is cube-free, so n = 0, implying y = f , x′ = yg. Finally, we can write
Q = yz′ygyz′yz′yg. Note that g 6= λ, otherwise (yz′y)3 ⊆ QQ. From this representation
of Q we can express q, p, and l in terms of |y|, |z′|, and |g|; from Figure 3 we know that
l = 2q− |yz′yb|. Thus, we have

p = 3|y|+ 2|z′|+ |g| ,
q = 5|y|+ 3|z′|+ 2|g| ,
l = 8|y|+ 5|z′|+ 4|g| −1.

(1)

Recall that |y| ≥ 0, |z′|, |g| ≥ 1. From (1) we get q = l − p − |g| + 1 ≤ l − p,
q = p + l−|z′ |+1

4 ≤ p + l
4 , and also q > l+2p

3 (the border of Zone I). This gives us exactly
the green triangle inside Zone I with the vertices ( 5

2 p, 3
2 p), ( 8

3 p, 5
3 p), (4p, 2p).

Zone II: q ≤ l+2p
3 and q > p. Together with 2q > l (O3), this gives the mutual location

of the suffix QQQ and factor PPP′ of w, as depicted in Figure 4 (y 6= λ since q > p; z or x
can be empty).

x xz zy ya b
P P

Q Q

P ′

Figure 4. Location of factors of w for Zone II: q ≤ l+2p
3 , q > p, 2q > l. The leftmost Q consists of a

suffix of P, followed by a longer prefix of P; P = zyxa is partitioned accordingly.

Since xb and yx are prefixes of Q and y is a suffix of Q (Figure 4), one has yyx ⊆ QQ.
As QQ is cube-free, y is not a prefix of x. Comparing the prefixes xb and yx of Q, we have
y = xby′ for some (possibly empty) y′. Then, Q = xby′xazxby′, P = zxby′xa. We express
p, q, and l = 2q− |xb| in terms of |x|, |y′|, |z|:

p = 2(|x|+ 1)|+ |y′|+ |z|,
q = 3(|x|+ 1)|+ 2|y′|+ |z|,
l = 5(|x|+ 1)|+ 4|y′|+ 2|z|.

(2)

From (2), we get q = l − p− |y′| ≤ l − p; together with the boundaries of Zone II,
the line q = l − p forms the green triangle inside Zone II with the vertices (2p, p), ( 5

2 p, 3
2 p),

(4p, 2p) (Figure 2).
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Zone III: q ≤ l, q < p. Together with q > l+p
3 (O3), this gives the mutual location of

the suffix QQQ and factor PPP′ of w, as depicted in Figure 5 (v, z 6= λ since q < p; x, y can
be empty).

x xz z yv va b
P P

Q Q Q

P ′

Figure 5. Location of factors of w for Zone III: q < p, q ≤ l, 3q > l + p. The leftmost Q consists of
a suffix of P, followed by a shorter prefix of P; the middle Q ends with some suffix y outside P′,
possibly empty; P = zvxa is partitioned accordingly.

Since xa and vx are prefixes of Q and vQ ⊆ PP (Figure 5), one has vvx ⊆ PP, so
v is not a prefix of x, and thus v = xav′ for some (possibly empty) v′. Then z = v′xby,
Q = xav′xby, P = v′xbyxav′xa. We express p, q, and l = q + |y| in terms of |x|, |v′|, |y|:

p = 3(|x|+ 1)|+ 2|v′|+ |y|,
q = 2(|x|+ 1)|+ |v′|+ |y|,
l = 2(|x|+ 1)|+ |v′|+ 2|y|.

(3)

From (3), we get q = l+2p−|v′ |
4 ≤ l+2p

4 ; together with the boundaries of Zone III, this
line forms the green triangle in Zone III with the vertices ( p

2 , p
2 ), (

2
3 p, 2

3 p), (2p, p) (Figure 2).
Zone IV: q > l. One has q > p/2 (O1) and 2q < l + p (O2), and so, q < p. Then the

mutual location of the suffix QQQ and factor PPP′ of w is as in Figure 6 (x 6= λ since
2q > p; v 6= λ since q < p; z 6= λ; since 2q < l + p; y can be empty).

x xz zy yv va b
P P

Q Q Q

P ′

Figure 6. Location of factors of w for Zone IV: q > p/2, q > l, 2q < l + p. The leftmost Q consists
of a suffix of P, followed by a shorter prefix of P; the middle Q is a proper factor of P; P = zvxa is
partitioned accordingly.

Since x, vx are prefixes of Q and vQ ⊆ PP (Figure 6), one has vvx ⊆ PP, so vvx ⊆ PP,
v is not a prefix of x, and thus v = xv′ for some v′ 6= λ. Taking y and xy, which are another
pair of prefixes of Q, we get x = ybx′ (x′ is possibly empty) because xxy ⊆ QQ. Note that
if v′ is a prefix of x, then (xv′)3 ⊆ xv′xv′xx ⊆ vQQ ⊆ PP, which is impossible. Thus, v′

is not a prefix of x and then of y. Since xv′ and xya are prefixes of Q, we get v′ = yag for
some (possibly empty) g. Thus, Q = ybx′yagybx′, P = gybx′ybx′yagybx′ya. We express
p, q, and l = q− |yb| in terms of |x′|, |g|, |y|:

p = 5(|y|+ 1)|+ 3|x′|+ 2|g|,
q = 3(|y|+ 1)|+ 2|x′|+ |g|,
l = 2(|y|+ 1)|+ 2|x′|+ |g|.

(4)

From (4), we get q = l+2p−|g|
4 ≤ l+2p

4 and q = p− l + |x′| ≥ p− l; together with the
boundary q = l, the obtained two lines form the green triangle in Zone IV with the vertices
( p

2 , p
2 ), (

2
5 p, 3

5 p), ( 2
3 p, 2

3 p) (Figure 2).
Thus, we identified all “red” and “green” parts of the areas I–IV, getting the full picture

from Figure 2. Theorem 2 is proved.

The second crucial step in the proof of Theorem 1 is the following lemma on the
density of positions fixed by cubes with similar periods.
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Lemma 3. Suppose that l ≥ 1, p ≥ 2 are integers, and w is a cube-free word such that |w| > l.
Among any l consecutive letters of w, those less than 8

5 + 3l
5p are fixed by cubes with periods in the

range [p..2p−1].

Proof. Let us consider an inverse problem:

(?) Let l0 < l1 < · · · < ls (s ≥ 1) be positions in w containing letters fixed by cubes with
periods q0, . . . , qs, respectively, where qi ∈ [p..2p−1] for all i; find a lower bound for
ls − l0 (as a function of s and p) which applies for every sequence q0, . . . , qs.

The distance between each two consecutive position li and li+1 is lower-bounded by
Theorem 2. More precisely, we use Theorem 2 to make conclusions of the form

• li+1− li ≥ A, where the point (A, qi+1) is on the border of the red polygon in Figure 2,
in which p = qi, l = li, and q = qi+1.

For example, since the point (25, 15) is on the segment q = l − p of the border of such
a polygon built for p = 10, we conclude that the condition qi = 10, qi+1 = 15 implies
li+1 − li ≥ 25. Let β = qi, α = qi+1, l = li+1 − li. Then Theorem 2 implies the following
inequalities related to the boundaries of the polygon in Figure 2 (β and α play the roles of p
and q, respectively):

l ≥ 4α− 4β if α ≥ 5
3 β (5a)

l ≥ α + β if β ≤ α ≤ 5
3 β (5b)

l ≥ 4α− 2β if 3
5 β ≤ α ≤ β (5c)

l ≥ β− α if α ≤ 3
5 β. (5d)

Assume that~q = (q0, . . . , qs) is a sequence of positive rational numbers such that

max
i∈[0..s]

qi < 2 min
i∈[0..s]

qi.

We define its span span(~q) as the lower bound for the difference ls − l0 for the sequence
~q of periods. Precisely, span(~q) is the minimum number such that there exists a sequence
0 = l0 < l1 < · · · < ls = span(~q) satisfying, for each i, the property “the point (li+1−li, qi+1)
is on the border of the red polygon in Figure 2, in which qi is substituted for p”. Thus,
min span(~q), where the minimum is taken over all sequences of length s+1 in the given
range [p..2p−1], is the lower bound sought in (?).

We write span(qi, . . . , qj) for the span of the corresponding subsequence of~q. Note that
spans are additive: span(qi, . . . , qj) + span(qj, . . . , qm) = span(qi, . . . , qm). For the simplest
case of a two-element sequence, (5a)–(5d) imply

span(β, α) =


4α− 4β, if α ≥ 5

3 β

α + β, if β ≤ α ≤ 5
3 β

4α− 2β, if 3
5 β ≤ α ≤ β

β− α, if α ≤ 3
5 β

. (6)

From (6), we immediately have

(∗) for any fixed β, the function span(β, α) monotonically increases for α ∈ [ 3
5 β, 2β).

Since all borders in Figure 2 are line segments, the equality span(C~q) = C · span(~q)
holds for any C > 0 (if a sequence (l0, . . . , ls) works for ~q, then (Cl0, . . . , Cls) works for
C~q ). Thus, we simplify the subsequent argument by considering a particular range for the
sequence~q: qi belongs to the semiclosed interval [1, 2) for all i.

Given ~q, we iteratively modify it from right to left. Each modification results in a
sequence of the same length, in the same range, and with the same or a smaller span; the
result of the last modification is one of “good” sequences, the span of which can be easily
computed. The smallest span of a “good” sequence is the lower bound for the span of
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any sequence~q in the given range. Precise definitions are as follows. We call a sequence
(r0, . . . , rt) canonical if it contains only numbers 1 and 5

3 in a way that no two ( 5
3 )’s are

consecutive and, in addition, r0 = rt = 1. A sequence ~q = (q0, . . . , qs) is good if it has a
nonempty canonical suffix beginning at q0, q1, or q2.

We transform an arbitrary sequence into a good one with local transformations chang-
ing either one element or two consecutive elements of a sequence. Note that if we change,
say, qi and qi+1, this affects span(qi−1, qi, qi+1, qi+2) but preserves span(q1, . . . , qi−1) and
span(qi+2, . . . , qs). By (∗) and (6) one has

for β ≤ 5
3 : span(β, α) ≥ span(β, 1) = 4− 2β;

for β ≥ 5
3 : span(β, α) ≥ span(β, 3

5 β) = 2
5 β.

These inequalities justify the first transformation rule:

T1: given a sequence (q0, . . . , β, α), replace α by 1 if β ≤ 5
3 and by 3

5 β otherwise.

Next, we consider the span of a triple (γ, β, 3
5 β) as a function of β. Here, β ≥ 5

3 , so
span(γ, β) ≥ span(γ, 5

3 ) by (∗). Since span(β, 3
5 β) = 2

5 β ≥ 2
3 = span( 5

3 , 1), we have

span(γ, β,
3
5

β) = span(γ, β) + span(β,
3
5

β) ≥ span(γ,
5
3

, 1).

Further, compare span(γ, 5
3 , 1) to span(γ, 1, 1). For γ ≥ 5

3 we obtain, by (6),

span(γ, 5
3 , 1) = span(γ, 5

3 ) + span( 5
3 , 1) = (4 · 5

3 − 2γ) + 2
3 > 3

> (γ− 1) + 2 = span(γ, 1, 1).

For γ ≤ 5
3 , (6) gives us span(γ, 5

3 , 1) = γ + 7
3 and span(γ, 1, 1) = 6− 2γ. The first

number is bigger (resp., smaller) if γ is bigger (resp., smaller) than 11
9 . Therefore, we

justified the second transformation rule:

T2: given a sequence (q0, . . . , γ, β, 3
5 β), replace (β, 3

5 β) by (1, 1) if γ ≥ 11
9 and by ( 5

3 , 1)
otherwise.

Rules T1 and/or T2 replace the last number in the processed sequence ~q by 1 and
serve as the base case in transforming ~q into a good sequence. Now we describe the
general case, assuming that~q has a nonempty canonical suffix (qi, . . . , qs). The subsequent
transformations preserve the numbers qi, . . . , qs and aim at extending the canonical suffix.

Consider the span of a triple (γ, β, 1) as a function of β. By (6), for γ ≥ 5
3 , we have

span(γ, β) =


γ+β, if β ≥ γ;
4β−2γ, if 3

5 γ ≤ β ≤ γ;
γ−β, if β ≤ 3

5 γ;

span(β, 1) =

{
β−1, if β ≥ 5

3 ;
4−2β, if β ≤ 5

3 ;

span(γ, β, 1) = span(γ, β) + span(β, 1) =


2β + γ− 1, if β ≥ γ;
5β− 2γ− 1, if 5

3 ≤ β ≤ γ;
2β− 2γ + 4, if 3

5 γ ≤ β ≤ 5
3 ;

−3β + γ + 4, if β ≤ 3
5 γ.

Thus, span(γ, β, 1) has a unique minimum at β = 3
5 γ. Similarly, for γ ≤ 5

3 we have

span(γ, β) =


4β−4γ, if β ≥ 5

3 γ;
γ+β, if γ ≤ β ≤ 5

3 γ;
4β−2γ, if β ≤ γ;

span(γ, β, 1) =


5β− 4γ− 1, if β ≥ 5

3 γ;
2β + γ− 1, if 5

3 ≤ β ≤ 5
3 γ;

−β + γ + 4, if γ ≤ β ≤ 5
3 ;

2β− 2γ + 4, if β ≤ γ.
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Here, span(γ, β, 1) has two local minima, γ + 7
3 at β = 5

3 and 6− 2γ at β = 1. As we
learned above, the first number is bigger (smaller) if γ is bigger (resp., smaller) than 11

9 .
Now, the third transformation rule replaces β in a triple (γ, β, 1) with a value minimizing
span(γ, β, 1) (recall that canonical sequences begin with 1):

T3: given a sequence (q0, . . . , γ, β, qi, . . . , qs) with a canonical suffix (qi, . . . , qs), replace β

by 3
5 γ if γ ≥ 5

3 ; by 5
3 if γ ≤ 11

9 ; and by 1 otherwise.

If the rule T3 replaces β by 1, the canonical suffix is extended. In the two remaining
cases, we need additional rules. Consider the span of a triple (δ, γ, 5

3 ) as a function of γ,
where γ ≤ 11

9 . By (6), we have span(γ, 5
3 ) = γ + 5

3 and

span(δ, γ) =


δ+γ, if γ ≥ δ;
4γ−2δ, if 3

5 δ ≤ γ ≤ δ;
δ−γ, if γ ≤ 3

5 δ.

span(δ, γ, 5
3 ) =


2γ + δ + 5

3 , if γ ≥ δ;
5γ− 2δ + 5

3 , if 3
5 δ ≤ γ ≤ δ;

δ + 5
3 , if γ ≤ 3

5 δ.

Hence, at γ = 1 the minimum is attained. Thus, the next transformation is correct:

T4: given a sequence (q0, . . . , δ, γ, 5
3 , qi, . . . , qs) with a canonical suffix (qi, . . . , qs) and

γ ≤ 11
9 , replace γ by 1.

The application of T4 extends the canonical suffix of a sequence by two elements.

Finally, consider a quadruple (δ, γ, 3
5 γ, 1). By (6), span(δ, 1, 5

3 , 1) =

{
δ + 7

3 , if δ ≥ 5
3 ;

22
3 − 2δ, if δ ≤ 5

3 ;
and span(γ, 3

5 γ, 1) = 4− 4
5 γ. Then we study span(δ, γ, 3

5 γ, 1) depending on δ:

δ ≥ γ : span(δ, γ, 3
5 γ, 1) = 16

5 γ− 2δ + 4 > 16
3 > δ + 7 3

5
3 ≤ δ ≤ γ : span(δ, γ, 3

5 γ, 1) = 1
5 γ + δ + 4 > δ + 7 3

3
5 γ ≤ δ ≤ 5

3 : span(δ, γ, 3
5 γ, 1) = 1

5 γ + δ + 4 ≥ 2γ− 2δ + 4 ≥ 22
3 − 2δ

δ ≤ 3
5 γ : span(δ, γ, 3

5 γ, 1) = 16
5 γ− 4δ + 4 ≥ 2γ− 2δ + 4 ≥ 22

3 − 2δ.

In all cases, span(δ, γ, 3
5 γ, 1) ≥ span(δ, 1, 5

3 , 1), Thus, we have one more correct trans-
formation rule which extends the canonical suffix:

T5: given a sequence (q0, . . . , δ, γ, 3
5 γ, qi, . . . , qs) with a canonical suffix (qi, . . . , qs), replace

(γ, 3
5 γ) by (1, 5

3 ).

Starting with an arbitrary sequence~q, we apply T1 and/or T2 to get a sequence with
a nonempty canonical suffix. For any sequence with such a suffix preceded by three or
more numbers, at least one of the transformations T3–T5 is applicable. Note that T3 either
increases the length of the canonical suffix or makes one of T4, T5 applicable, while each
of T4 and T5 increases this length. Thus, we eventually arrive at the situation where the
canonical suffix of the current sequence~r = (r0, . . . , rs) is preceded by 0, 1, or 2 numbers, so
that no other transformations are possible. If this suffix begins with r2, then T3 and/or T4
was already applied, and then either r1 = 5

3 or r1 = 3
5 r0. In particular,~r is a good sequence.

To find a good sequence of minimum span, we note that span(1, 1, 1) = 4 > 10
3 =

span(1, 5
3 , 1). Hence, a unique canonical sequence of odd length and minimum span

is (1, 5
3 , 1, 5

3 , . . . , 1) and one of the canonical sequences of even length and minimum
span is (1, 1, 5

3 , 1, 5
3 , . . . , 1). Now it is easy to find, using (6), good sequences of mini-

mum span. Namely, for even (resp., odd) s, we have~r = (β, 3
5 β, 1, 5

3 , 1, 5
3 , . . . , 1) (resp.,

~r = (β, 3
5 β, 1, 1, 5

3 , 1, 5
3 , . . . , 1)), where β = 2− ε for ε as small as possible. Thus, in the case

of even (resp., odd) s, one has span(~r) = 5
3 s− 14

15 + 4
5 ε (resp., span(~r) = 5

3 s− 3
5 + 4

5 ε). Thus,
span(~q) > 5

3 s− 1 for any sequence~q = (q0, . . . , qs) such that qi ∈ [1, 2) for all i.
Returning to the problem (?) we are solving, recall that span(p~q) = p · span(~q), Thus,

we have the lower bound ls − l0 > ( 5
3 s− 1)p. This means, at most, s+1 letters fixed by
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cubes with periods in [p..2p−1] among each l = ( 5
3 sp− p + 1) consecutive positions of w.

Now, easy arithmetic gives s+1 < 8
5 + 3l

5p , as required.

Proof of Theorem 1. We split the range from h to infinity into disjoint finite ranges such
that the kth range is [2k−1h..2kh−1]. Consider the density of positions in a cube-free word
w, fixed by p-cubes with p in the kth range. By Lemma 3 and the definition of density, it is
upper-bounded by 3

5·2k−1h . Summing up the geometric series of all these upper bounds, we
get the required bound 6

5h .

4. Positions Fixed by Small Cubes
4.1. Regular Approximations and Aho–Corasick Automata

To estimate the number of letters in a cube-free word that are fixed by small cubes, we
analyze finite automata recognizing some approximations of the language CF. Let Li be the
language of all binary words containing no cubes of period ≤ i. Then, Li contains CF and
is regular (as a language defined by a finite set of forbidden factors); Li is referred to as ith
regular approximation of CF. The study of regular approximations is a standard approach to
power-free languages (see, e.g., [9] (Section 3)).

A regular language given by a finite set of forbidden factors can be represented by
a partial deterministic finite automaton (dfa) built by a variation of the classical Aho-
Corasick algorithm, as described in [27]. Let us provide some necessary details for regular
approximations of CF, following a more general scheme from [28].

To get the dfa Ai accepting the language Li, one proceeds in three steps.

1. List all p-cubes with periods p ≤ i and build the prefix tree Pi of these words; then,
the leaves of Pi are exactly the p-cubes, and all internal nodes are cube-free words:

2. Consider Pi as a partial dfa with the initial state λ and complete this dfa, adding
transitions by the Aho–Corasick rule: if there is no transition from a state u by a letter c,
add the transition u c−→ v, where v is the longest suffix of uc, present in Pi;

3. Delete all leaves of Pi from the obtained automaton.

The resulting partial dfa is Ai; it accepts by any state and rejects if it cannot read the
word. For details see, for example, [27]. Let us fix some i ≥ 1 and analyze the properties
of Ai.

We write u.v for the state of Ai reached from the state u by the path labelled by v.
The following lemma connects Ai and fixed letters in cube-free words.

Lemma 4. A letter w[j] of a cube-free word w is fixed by a p-cube with p ≤ i if the state
λ.(w[1..j−1]) of the dfa Ai has a single outgoing transition.

Proof. W.l.o.g., w[j] = a. Since w is cube-free, the states λ.(w[1..j−1]) and λ.(w[1..j]) exist
and are connected by an edge labelled by a. Let w[j] be fixed by a p-cube; this means
that w[1..j−1]b ends with some p-cube uuu; since p ≤ i, Pi has the leaf uuu. By the

Aho–Corasick rule, the edge λ.(w[1..j−1]) b−→ uuu was added to Pi (step 2 above) and
then deleted together with the leaf uuu (step 3). Thus, the state λ.(w[1..j−1]) has a single
outgoing transition. For the other direction, note that if λ.(w[1..j−1]) has the only transition
to λ.(w[1..j]), then the state λ.(w[1..j−1]b) was deleted at step 3. Hence, this state is some
p-cube uuu with p ≤ i. Since the Aho–Corasick rule implies that the state λ.v is always a
suffix of v, w[1..j−1]b has the suffix uuu, whence the result.

In accordance with the other notation, we call fixed the states of Ai with a single
outgoing transition and the edges representing these transitions. The next lemma shows
how to get an upper bound on the number of letters in a word, fixed by short cubes.

Lemma 5. Let di and ci be minimal numbers such that in the automaton Ai (a) for any m, every
simple cycle of length m contains, at most, dim fixed states, and (b) for any n, every simple path
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of length n contains at most din + ci fixed states. Then, every cube-free word w contains, at most,
di|w|+ ci positions fixed by p-cubes with p ≤ i.

Proof. In Ai, consider the walk W from λ to λ.w labelled by w. By Lemma 4, the number
of fixed positions we need to estimate equals the number of occurrences of fixed states in
W, excluding the terminal occurrence of λ.w. Note that W, as well as any walk in Ai, can
be obtained as follows: take a simple path between the initial and the terminal states of
the walk and insert repeatedly simple cycles into the walk built so far. The simple path
(say, of length n) contains, at most, din + ci fixed states, and the rest contains, at most,
di(|w| − n) fixed states, whence the result.

Corollary 1. In an infinite cube-free word, the density of the set of letters fixed by cubes with
periods of at most i is upper-bounded by di.

The numbers di and ci can be computed from Ai in polynomial time using dynamic
programming (due to Corollary 1, we need only di). A straightforward way to do this is to
compute for each u, v in the order of increasing k the maximum fraction d[u, v, k] of fixed
states in a (u, v)-walk of length at most k; then di = maxu d[u, u, Ni], whereAi has Ni states.
This algorithm has cubic complexity, but we can do significantly better. We note that any
automaton Ai has a unique nontrivial strongly connected component; this quite nontrivial
fact follows from the main result of [29].

Proposition 1. Let Ni and ni be the numbers of nodes in Ai and its nontrivial strongly connected
component, respectively. Then there exists an algorithm computing di from Ai in time O(n2

i + Ni).

Proof. Recall that the mean cost of a walk in a weighted digraph is the ratio between its cost
and its length. We reduce the problem of computing di to the problem of finding a cycle
of the minimum mean cost. Considering Ai as a digraph, we assign cost 0 to fixed edges
and cost 1 to free edges. Then we replace Ai with its unique nontrivial strongly connected
component A′i preserving the edge costs. This component contains all cycles of Ai. Now
di = 1− µ, where µ is the minimum mean cost of a cycle in the weighted digraph A′i.

The mean cost problem can be solved for an arbitrary strongly connected digraph
with n nodes and m edges in O(nm) time and space using Karp’s algorithm [30]. Noting
that, in our case, m = O(n), and that the strongly connected component can be found in
linear time by a textbook algorithm, we obtain the required time bound.

For the sake of completeness, let us describe Karp’s algorithm for our case. Fix an
arbitrary state q and define C(j, v) to be the minimum cost of a length-j walk from q to v or
∞ if no such walk exists. The (ni + 1)× ni table with the values of C(j, v) for j = 0, . . . , ni
and all states of A′i is filled using the following dynamic programming rule:

C(j + 1, v) = min
z:z

c−→v
(C(j, z) + cost(z, v)), (7)

C(0, v) =

{
0, if v = q,
∞, otherwise.

(8)

According to [30] (Theorem 1), µ = minv∈A′i
max0≤j<ni

(
C(ni ,v)−C(j,v)

ni−j

)
.

Remark 3. Karp’s algorithm also allows one to retrieve a cycle of minimum mean cost. To do
this, one stores the node z = P(j, v), which gives the minimum in the computation (7) of C(j, v)
(here, j = 1, . . . , ni, and P(j, v) is undefined if C(j, v) = ∞). The ni × ni table P(j, v) is then
used as follows. If u is a node for which the value of µ is reached, then we built the length-ni walk
q = u0 → u1 → · · · → uni = u such that P(j+1, uj+1) = uj for all j and output any simple
cycle from this walk. We will need the cycles of minimum mean cost in Section 4.3.
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4.2. Lower Bounds on Branching Density

We implemented the above algorithm and ran it for all i ≤ 18; for i = 18, the memory
required for the table C(j, v) is over 1 GB. The results are as follows.

Lemma 6. One has d1 = d2 = 1/2, d3 = · · · = d11 = 7/13, d12 = d13 = d14 = 13/24,
d15 = d16 = d17 = d18 = 53/96.

Now we are ready to prove our first main result.

Theorem 3. The branching density of an infinite binary cube-free word is at least
3509/9120 ≈ 0.38476.

Proof of Theorem 3. Let us fix some integer h ≥ 2. Theorem 1 and Corollary 1 together
imply that the density of fixed positions in an infinite cube-free word is upper-bounded by
dh−1 +

6
5h . Trying all values of di from Lemma 6, we get the maximum at h = 19:

d18 +
6

5 · 19
=

53
96

+
6

95
=

5611
9120

.

The statement of the theorem now follows.

In the same way, we can get the lower bound for the ternary square-free language
SF. From [19] (Lemma 5), we have the upper bound 2

h for the density of positions fixed by
squares of periods ≥ h. Lemmas 4 and 5, and Corollary 1 have direct analogs for ternary
square-free words; Proposition 1 and the algorithm inside remain valid for any automaton
having, at most, two outgoing edges for each state. Running the algorithm for the regular
approximations of SF up to i = 30, we obtained the correspondent numbers d′i. Taking
h = 31 and adding 2

h to d′30 = 19/28, we arrive at the following bound.

Theorem 4. The branching density of an infinite ternary square-free word is at least
223/868 ≈ 0.25691.

Recall that the growth rate of a factorial language L over the alphabet Σ is the limit
limn→∞ |L ∩ Σn|1/n. The growth rate β of CF is known with quite high precision [9]:
1.4575732 ≤ β ≤ 1.4575773. In terms of the prefix tree, this means that for big n, the number
of nodes at the (n + 1)th level is approximately β times bigger than the number of nodes
at the nth level. This fact makes β− 1 a lower bound on the fraction of branching nodes
at the nth level (because this level also contains nodes having no children). In Theorem 5
below, we use Proposition 1 and Remark 3 to prove that there exist infinite cube-free words
with the branching density strictly smaller than β− 1.

The above considerations can also be applied to the growth rate γ of SF, 1.3017597 ≤
γ ≤ 1.3017619 [9]. However, it is still open whether an infinite square-free word can have
the branching density smaller than γ− 1. The method of Theorem 5 would not work for
SF because the obtained values of d′i are too small.

4.3. Cube-Free Words with Small Branching Density

Theorem 5. The minimum branching density of an infinite cube-free word is less than or equal to
13/29 ≈ 0.44828.

Proof. The result of Lemma 6 gives us an idea of constructing an infinite cube-free word
with branching density less than β − 1. We see that 1− d15 ≈ 0.44792 < β − 1 (while
1− d14 ≈ 0.45833 > β− 1). Our aim is to construct an infinite cube-free word which has
the density of fixed positions very close to d15.

Using the table P(j, v) of Karp’s algorithm (see Remark 3), we find that the automaton
A15 contains exactly four cycles C1, C2, C̄1, and C̄2, each of length 96, reaching the minimum
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mean cost (1− d15). All four cycles are disjoint; the labels of cycles C̄1, C̄2 are complements
of the labels of C1 and C2, respectively. We note that C1 and C2 are connected to each other
by many edges. Let us consider a subgraph of A15 consisting of C1, C2, and two edges
connecting them as in Figure 7.

v

u

...
... C1

x1

y1
v′

u′

...
... C2

x2

y2

C3

Figure 7. Building the infinite cube-free word of small branching density using the cycles of low
mean cost in A15.

Since in the Aho-Corasick automaton, all edges with a common endpoint have the
same label (if this endpoint is distinct from λ), the paths from u to v and from u′ to v
in Figure 7 are labeled by the same word x1, while the paths from both v and v′ to u′ are
labeled by the same word x2. Denote the labels of the paths from v to u and from u′ to v′

by y1 and y2, respectively. Then the label of C1 is x1y1 (starting from u), the label of C2 is
x2y2 (starting from v′), and there is an “outer” cycle C3 with the label x1x2 (starting from
u′). We also note that x1 and y2 (resp., x2 and y1) begin with different letters.

Analyzing the subgraph of A15 generated by C1 and C2, we find the cycle C3 with the
smallest mean cost: it has a length of 156 and 86 fixed states. The corresponding values of
x1, x2, y1, y2 are as follows:

x1 = aabaabbaabaababaabaabbaabaababaabbaabaababaabaabbaabaababaabaabbaa

baababbabbaab, |x1| = 79

x2 = babbababbabbaabbabbababbabbaabbababbabbaabbabbababbabbaabbabbababb

abbaabaabab, |x2| = 77

y1 = aababbabbaabaabab, |y1| = 17

y2 = babbaabaababbabbaab, |y2| = 19.

Recall that the Thue–Morse word t is the fixed point of the morphism a→ ab, b→ ba:

t = t[1..∞] = abba baab baab abba baab abba abba baab baab abba abba baab abba baab . . . .

This word is overlap-free [10], that is, it has no factors of the form cucuc where c is a
letter and u is a word. We map t to an infinite binary word by the mapping φ defined by
two rules:

1. φ(t[1]) = x1;

2. φ(t[i]) =


x1 if t[i] = a 6= t[i− 1],
y1x1 if t[i] = a = t[i− 1],
x2 if t[i] = b 6= t[i− 1],
y2x2 if t[i] = b = t[i− 1].
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In other terms, to get φ(t), we replace each a (resp., b) in t with x1 (resp., x2), and then
insert yi in the middle of each factor xixi of the obtained word:

t = a bb ab aa bb aa ba bb a . . .

φ(t) = x1 x2y2x2 x1x2 x1y1x1 x2y2x2 x1y1x1 x2x1 x2y2x2 x1 . . . .

Thus, we naturally have a partition of φ(t) into factors which we call blocks, distin-
guishing between x-blocks x1, x2 and y-blocks y1, y2. Note that

(�) x1 and x2 have no occurrences in φ(t) other than x-blocks.

Indeed, the factor x1[4..9] = aabbaa does not occur in x2, y1, y2, or on the border of any
two blocks; the symmetric property holds for x2[3..9] = bbababb.

Let us prove that φ(t) is cube-free. Assume to the contrary that φ(t) contains a cube;
let XXX be the leftmost of the minimal cubes in φ(t). A direct check shows that all words
xiyixi and xixjxi are cube-free. Therefore, XXX contains a whole x-block inside; below, xi
denotes the leftmost such block, and xj denotes the x-block distinct from xi. The period |X|
of the cube cannot be smaller than the minimum period of xi. It is easy to check that the
only period of xi is |xi| − 3. Thus, |X| ≥ |xi| − 3 ≥ 74.

First, assume that xi is the only x-block in XXX. Since for the word xjxixj is cube-free,
XXX is an internal factor of either xiyixixj or xjxiyixi. Since |xiyixi|, |yixixj| ≤ 175 and
|XXX| ≥ 74 · 3 = 222, the length argument shows that yixi in the first case, and xiyi in the
second case is a factor of XXX. Thus, |X| is not smaller than the minimum of the periods of
words xiyi, yixi. This minimum equals 84, which is a period of both y1x1 and y2x2. Hence,
|XXX| ≥ 252 = 2|xi|+ |xj|+ |yi|. However, an internal factor of a word must be shorter
by at least two symbols than the word itself; this contradiction shows that XXX contains
more than one x-block. Therefore, XXX contains either xiyixi or xixj.

Let XXX = v1xiyixiv2. By the choice of xi, v1 is a proper suffix of xj and v2,
if nonempty, begins with the first letter of xj, which differs from the first letter of yi.
Thus, if |X| equals the minimum period of xiyixi, which is |xiyi|, then v2 = λ and then
|XXX| < 3|X|, which is impossible. Hence, |X| > |xiyi|. Therefore, for each of the two
blocks, xi, we see that XXX contains another factor xi at the distance of |X|. By (�), these
factors are x-blocks; both are inside v2 because v1 is a suffix of an x-block. Then, X contains
at least one occurrence of the block xi. As a result, XXX contains a factor xiwxiwxi for some
word w which is a product of blocks; here, xiw is a cyclic shift of X. Taking the φ-pre-image
of xiwxiwxi, we obtain a factor of the form auaua or bubub in t, in contradiction with the
overlap-freeness property.

Finally, let XXX = v1xixjv2. The word xixj has no periods smaller than |xixj| − 1.
Hence, |X| > |xi|+ |xj| − 1 and then X contains at least one of xi, xj. Since v1 contains no
x-blocks by the choice of xi, v1xi has no factor xj by (�). Then, X must contain xi, and we
arrive at a contradiction as in the previous paragraph. Thus, finally, we have proved that
φ(t) is cube-free.

The word φ(t) corresponds to an infinite walk from the node u in the subgraph of A15
depicted in Figure 7. The walk reads x1 (rule 1 in the definition of φ) and then respects
rule 2; the details are as follows. Let xi be just read; if the current letter of t coincides with
the previous one, the walk returns to the “start” node of the same cycle Ci by reading yi
and reads xi again; otherwise, the walk reads xj, where i 6= j. We know the fractions of
fixed states in the cycles C1, C2, and C3; to calculate the density of positions fixed by short
squares in φ(t) we use the folklore fact that the density of the sets of positions i such that
t[i..i+1] = aa (resp., ab, ba, bb) equals 1/6 (resp., 1/3, 1/3, 1/6). Then in the partition of φ(t)
into blocks, the densities of the blocks x1, x2 are equal and twice bigger than the densities
of the blocks y1 and y2. We group the blocks into labels of cycles C1, C2, C3:

φ(t) = [x1x2][y2x2][x1x2][x1y1][x1x2][y2x2][x1y1][x1x2][x1x2][y2x2][x1 . . . .
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Since x-blocks appear in the labels of two cycles while y-blocks appear in the label of
one cycle, all cycles appear with the same density. Thus, to get the density of fixed letters,
we take the total number of fixed states in C1, C2, and C3 and divide it by the sum of lengths
of cycles to get (86 + 53 + 53)/(156 + 96 + 96) = 16/29. Then the branching density of
φ(t) is, at most, 13/29. The theorem is proved.

Remark 4. In fact, the branching density of φ(t) is exactly 13/29: refining the analysis of cube-
freeness of φ(t), it is possible to show that this word does not contain letters fixed by long cubes.

5. The Bounds on Maximum Branching Density

The branching density of infinite cube-free words can be much bigger than
β− 1 ≈ 0.45758. The aim of this section is to prove the following theorem.

Theorem 6. (1) The maximum branching density of an infinite binary cube-free word is less than
67/93 ≈ 0.72043.
(2) There exists an infinite binary cube-free word with branching density 18/25 = 0.72.

Example 1. The branching density of the Thue–Morse word t is 2/3. Indeed, t is overlap-free,
and thus all fixed letters in it are fixed by 1-cubes. Hence, the fixed letters are exactly the letters a
(resp. b) preceded by the 1-square bb (resp. by aa); in each case, the density of such positions is 1/6,
as mentioned in Section 4.3. Thus, the density of fixed positions is 1/3.

The proof of Theorem 6 is based on the analysis of positions fixed by 1 cube. The dis-
tance between two successive occurrences of the square of a letter in a cube-free word is 2
(aabb/bbaa) or 3 (aabaa/bbabb) or 4 (aababb/bbabaa) or 5 (aababaa/bbababb); it cannot be 1
(aaa/bbb) or ≥ 6 (aababab · · · /bbababa · · · ) because of cube-freeness. Hence, if we know a
prefix w[1..i] of a cube-free word, this prefix ends with a 1-square, and the distance d to
the next 1-square is known; then we can uniquely reconstruct w[1..i + d]. We consider an
auxiliary alphabet ∆ = {2, 3, 4, 5} and refer to its elements as digits and to the words over
it as codes. For every cube-free word w ∈ Σ∞ we define its distance code dist(w) ∈ ∆∞ as
follows: dist(w)[i] is the distance between the ith and (i+1)th 1-squares in w (counting
from the left). For example, one has

t = a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b · · ·
dist(t) = 4 2 2 4 4 4 2 2 4 · · · .

Note that dist(w) determines w up to the complement and the few letters preceding
the first 1-square; in particular, it determines the branching density of w if w is cube-
free. Thus, instead of infinite cube-free words, here we study their distance codes. We
extend the definition of a distance code to finite words in the obvious way; for example,
dist(bbabaabb) = 42. Here, dist(w) determines w up to the complement, the letters preced-
ing the first 1-square, and the letters following the last 1-square. We define the inverse
of the map dist: for a code X ∈ ∆+, w = word(X) is the unique word which begins with
aa, ends with a 1-square, and satisfies dist(w) = X. Clearly, word(X) has length [X] + 2,
where [X] denotes the sum of digits in X, and has |X| letters fixed by 1-cubes. For example,
the cube-free word aabbabbabaababaa = word(2345) has a length of 16 and 4 letters fixed
by 1-cubes (underlined). The same definition of word, with the condition on the end of the
word omitted, applies for infinite codes.



Algorithms 2021, 14, 126 17 of 19

Remark 5. The word word(33) = aabaabaa is not a proper factor of a cube-free word;
word(434) = aababbabbabaa contains (bab)3, as well as word(435),word(534), and word(535).
In the following list of cube-free words, letters fixed by p-cubes are underlined by p lines:

word(2) = aabb word(234) = aabbabbabaa
word(3) = aabaa word(235) = aabbabbababb
word(4) = aababb word(432) = aababbabbaa
word(5) = aababaa word(532) = aababaabaabb

.

Proof of Theorem 6. Let A = (442)4422, B = (442)4445. Let X be the image of the Thue-
Morse word t under the substitution a → A, b → B. We prove Statement 2 by showing
that u = word(X) is cube-free and has the branching density 18/25 = 0.72. We first count
the positions in u fixed by 1-cubes and 2-cubes. We have one position fixed by a 1-cube
per digit of X and add one position fixed by a 2-cube for each digit 5 in X (see Remark 5).
Each block A adds [A] = 82 letters to u, from which |A| = 23 are fixed by 1-cubes; each
block B adds [B] = 93 letters from which |B| = 25 are fixed by 1-cubes and one is fixed by a
2-cube. Since A and B appear in X with the same density, the density of positions fixed by
1- and 2-cubes in u equals (|A|+ |B|+ 1)/([A] + [B]) = 49/175 = 7/25. Thus, to prove
Statement 2 of the theorem, it is necessary and sufficient to show that no position in u is
fixed by a k-cube with k > 2; that is, u contains no almost-cubes of the form xxx[1..|x|−1]
with |x| > 2. Aiming at a contradiction, consider an almost-cube of x in u.

It is easy to check that word(24),word(42),word(44), and word(454) contain no almost-
cubes and have at least six periods. Thus, |x| ≥ 6, and hence, x contains a 1-square. Then,
|x| is the distance between two squares of the same letter. Each of word(2) and word(4)
begins and ends with different 1-squares, while word(5) begins and ends with the same
square. Hence, |x| = [Y] for some factor Y of X such that (i) the total number of 2’s and 4’s
in Y is even; (ii) YY is a factor of X. If Y contains no 5’s, there are just two cases to check.
Case 1: Y = 44, |x| = 8. Long factors with period 8 are located in u, up to a complement,
within the factors

word(244442) = a(abbabaab)2(abba)a (length 20);

word(244445) = a(abbabaab)2(abbaba)bb (length 22);

word(544442) = aa(babaabab)2(babaab)b (length 22);

their lengths are less than 8 · 3− 1 = 23 required for an almost-cube.
Case 2: Y = (442)2, |x| = 36. The code YY occurs in X only as a prefix of A or B and

thus is preceded and followed by one of the factors 422 and 445. The longest factor of u
with period 36, up to a complement, can be found in

word(2422(442)4445) =

a(abbabaababbaababbabaababbabaabbabaab)2(abbabaababbaababbabaababbabaab)abaa,

which is again too short (102 letters) for an almost-cube (36 · 3− 1 = 107).
Therefore, 5 must occur in Y. Since YY ⊆ X, |Y| is the distance between two occur-

rences of 5 in X. Since 5 occurs in X only as a suffix of the block B, Y is a cyclic shift of
some product of blocks. As above, we will show that the longest factor of u with period
|x| = [Y] is shorter than 3|x| − 1. Let C = (442)442, then A = C2, B = C445. Since t
is overlap-free, the maximal factor of X with period |Y| looks like Y′Y′C, where Y′ is a
product of blocks and a cyclic shift of Y. Then, the longest factor of u with period |x|
looks like v1word(Y′Y′C)v2. Here, |word(Y′Y′C)| = 2[Y′] + [C] + 2 = 2[Y′] + 82; note that
[Y] ≥ [B] = 93. Further, v1 is the common suffix obtained when decoding different digits
(2 and 5) and v2 is the common prefix obtained when decoding different digits (2 and 4).
Hence, |v1| = |v2| = 1. In total, the length of the |x|-periodic factor is strictly smaller
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than 3[Y′]− 1. Therefore, no almost-cubes are present in u. This proves Statement 2 of
the theorem.

For Statement 1, we take a cube-free word w of maximum branching density and
consider its code dist(w). By Remark 5, each digit in dist(w) corresponds to a letter fixed
by a 1-cube, and a digit 5 also corresponds to a letter fixed by a 2-cube. The density of
fixed positions in w is at its minimum, and thus is upper-bounded by 7/25, which is such
a density for u. Since 7/25 is closer to 1/4 than to 1/3, the majority of digits in w are 4’s.
Since w has the same branching density as each of its suffixes, we assume w.l.o.g. that
dist(w) begins with 4, and represent it as a sequence of blocks: each block consists of one
or more 4’s in the beginning and one or more other digits in the end. Note that the words
word(5445) and word(c45d), for any digits c, d, contain an 8-cube (cf. Case 1 above). Then,
a short search reveals all blocks providing the density of fixed positions not greater than 0.3:

44442 : 5/18 ≈ 0.27778; 4445 : 5/17 ≈ 0.29412;
44445 : 6/21 ≈ 0.28571; 442 : 3/10;

4442 : 4/14 ≈ 0.28571.

(We recall that blocks containing 3’s are restricted, as shown in Remark 5.) We note that
word((442)544) and word((442)5435) contain 36-cubes, while word(43243243) contains a 14-
cube. As a result, the density of fixed letters in w cannot be smaller than such density in
word(((442)4445)∞), which is 26/93. This gives us the upper bound 67/93 on the branching
density of w, as required.

6. Discussion and Future Work

As we have seen in this paper, the branching density of particular infinite words
in a typical power-free language of exponential growth can vary significantly. Thus,
a natural question is to determine the average density. The first problem is to define what is
“average”; we suggest that this should be the expected density of a word randomly chosen
from all infinite binary cube-free words according to the distribution which is “uniform” in
some sense. One possible way to choose a random infinite word is a random walk down
the prefix tree (with all finite subtrees trimmed).

Another possible next step is to check whether the ternary square-free language SF,
which is another “typical” power-free language of exponential growth, demonstrates the
same patterns as CF. Currently we do not know whether some infinite square-free words
have branching density strictly less than its growth rate minus one. We also know no
reasonable bound for the maximum branching density in SF.
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