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Abstract  

Satterthwaite and Toepke (1970 Phys. Rev. Lett. 25 741) predicted high-temperature 

superconductivity in hydrogen-rich metallic alloys, based on an idea that these compounds 

should exhibit high Debye frequency of the proton lattice, which boosts the superconducting 

transition temperature, Tc. The idea has got full confirmation more than four decades later 

when Drozdov et al (2015 Nature 525 73) experimentally discovered near-room-temperature 

superconductivity in highly-compressed sulphur superhydride, H3S. To date, more than a 

dozen of high-temperature hydrogen-rich superconducting phases in Ba-H, Pr-H, P-H, Pt-H, 

Ce-H, Th-H, S-H, Y-H, La-H, and (La,Y)-H systems have been synthesized and, recently, 

Hong et al (2021 arXiv:2101.02846) reported on the discovery of C2/m-SnH12 phase with 

superconducting transition temperature of Tc ~ 70 K.  Here we analyse the magnetoresistance 

data, R(T,B), of C2/m-SnH12 phase and report that this superhydride exhibits the ground state 

superconducting gap of (0) = 9.2 ± 0.5 meV, the ratio of 2(0)/kBTc = 3.3 ± 0.2, and 0.010 < 

Tc/TF < 0.014 (where TF is the Fermi temperature) and, thus, C2/m-SnH12 falls into 

unconventional superconductors band in the Uemura plot.  

 

mailto:evgeny.talantsev@imp.uran.ru


2 
 

Comparison of highly-compressed C2/m-SnH12 superhydride with conventional 

superconductors  

I.  Introduction  

Satterthwaite and Toepke [1] were first who understood that hydrogen-rich compound 

should exhibit highest superconducting transition temperature: “…There has been theoretical 

speculation [2] that metallic hydrogen might be a high-temperature superconductor, in part 

because of the very high Debye frequency of the proton lattice. With high concentrations of 

hydrogen in the metal hydrides one would expect lattice modes of high frequency and if there 

exists an attractive pairing interaction one might expect to find high-temperature 

superconductivity in these systems also.” Mathematical rigorous description of 

Satterthwaite’s and Toepke’s idea [1] had been given 34 years later by Ashcroft [3].  

In 2015 Drozdov et al [4] reported on experimental discovery of first near-room-

temperature superconductor (NRTS) H3S, which was also the first superhydride compound 

synthesized at megabar pressure level heated by laser pulses inside of diamond anvil cell. 

This technique is used since than to synthesize new NRTS phases, and to date more than a 

dozen high-temperature hydrogen-rich superconducting phases have been synthesised in Pr-H 

[5], Ba-H [6], P-H [7], Pt-H [8], Ce-H [9], Th-H [10,11], S-H [4,12-17], Y-H [18,19], La-H 

[20-24], (La,Y)-H [25] and CaHx [26,27] systems.   

Recently, Hong et al [28] extended superhydride family by the discovery of C2/m-SnH12 

phase which exhibits the superconducting transition temperature of Tc ~ 70 K at pressure of P 

= 190 GPa.  This experimental result is in a good accord with first-principles calculations 

performed in 2015 by Esfahani et al [29], who predicted Tc = 83-93 K for C2/m-SnH12 phase 

compressed at pressure of P = 250 GPa. Despite Esfahani et al [29] predicted that C2/m-

SnH12 phase can be thermodynamically stable at P ≥ 250 GPa, XRD studies [28] show that 

C2/m-SnH12 phase is dominant at lower pressure range of P ~ 200 GPa.  This difference can 
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be explained by an atomic disorder, hydrogen non-stoichiometry, etc., which are always (in 

some degree) real world samples features. It should be noted, that here we assume that 

calculated values for the electron-phonon coupling constant, e-ph = 1.25, and logarithmic 

average phonon frequency, ℏ ⋅ 𝜔𝑙𝑜𝑔 = 991 𝐾, reported by Esfahani et al [29] for C2/m-SnH12 

compressed at P = 250 GPa will be still valid for sample compressed at P = 190 GPa [28].   

Hong et al [28] measured magnetoresistance curves, R(T,B), up to applied magnetic field 

of Bappl =7 T, from which, by applying analytical equation proposed by Jones et al [30]:  

𝐵𝑐2(𝑇) =
𝜙0

2⋅𝜋⋅𝜉2(0)
⋅ (

1−(
𝑇

𝑇𝑐
)
2

1+(
𝑇

𝑇𝑐
)
2)       (1)  

where 𝜙0 =
ℎ

2⋅𝑒
 is superconducting flux quantum, and (0) is the ground state coherence 

length, the ground state upper critical field was deduced as Bc2(0) = 11.2 T.  

Here we perform further analysis of R(T,B) data reported by Hong et al [28] with the 

purpose to extract the ground state amplitude of the superconducting energy gap, (0), one of 

primary parameters of the superconducting state. In addition, we calculate the ratio of 

transition temperature to the Fermi temperature, TF, to locate C2/m-SnH12 phase in Uemura 

plot [31,32].  

 

II.  R(T,B) analysis  

Primary task in the analysis of R(T,B) data is to  deduce the superconducting critical 

temperature, Tc, for which we recently proposed [33] to use a fit of experimental R(T,B) data 

to a function:  

𝑅(𝑇, 𝐵𝑎𝑝𝑝𝑙) = 𝑅0 + 𝑘 ⋅ 𝑇 + 𝜃(𝑇𝑐
𝑜𝑛𝑠𝑒𝑡 − 𝑇) ⋅

(

 
 
 𝑅𝑛𝑜𝑟𝑚

(𝐼0 (𝐹 ⋅ (1 −
𝑇

𝑇𝑐
𝑜𝑛𝑠𝑒𝑡)

3 2⁄

))

2

)

 
 
 
+ 
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𝜃(𝑇 − 𝑇𝑐
𝑜𝑛𝑠𝑒𝑡) ⋅ (𝑅𝑛𝑜𝑟𝑚 + (𝑘 − 𝑘1) ⋅ 𝑇𝑐

𝑜𝑛𝑠𝑒𝑡 + 𝑘1 ∙ 𝑇)     (2)  

 

where 𝑅0, 𝑅𝑛𝑜𝑟𝑚, 𝑇𝑐
𝑜𝑛𝑠𝑒𝑡, 𝑘, 𝑘1, 𝑎𝑛𝑑 𝐹 are free-fitting parameters, and 𝜃(𝑥) is the Heaviside 

function.  

The first two terms in the Eq. 2, i.e. (𝑅0 + 𝑘 ⋅ 𝑇), are introduced in Ref. 33 to adopt 

possible ohmic resistance in R(T,B) curve which appears as a result of metallic weak-links in 

NRTS sample in diamond anvil cell.  

The third fitting term in Eq. 2 which approximates the superconducting transition:  

𝑅(𝑇, 𝐵𝑎𝑝𝑝𝑙) =
𝑅𝑛𝑜𝑟𝑚

(𝐼0(𝐹⋅(1−
𝑇

𝑇𝑐
𝑜𝑛𝑠𝑒𝑡)

3 2⁄

))

2       (3)  

was proposed by Tinkham [34] to fit experimental R(T,B) curves in HTS cuprate ceramics, 

where Tinkham [34] proposed to use:  

𝐹 =
𝐶

2⋅𝐵𝑎𝑝𝑝𝑙
          (4)  

where C is free-fitting parameter having unit of Tesla, and 𝐵𝑎𝑝𝑝𝑙 is applied magnetic field.  

Physical background of Eq. 3 was explained by Tinkham [34] as: “ … the specific 

predicted B3/2 dependence fits quite well with a variety of published data …. We also point 

out that the result … would hold even if the functional form (which is in our case Eqs. 3,4) 

were replaced by some other similar function of U0/kBT, so long as the form of (which is our 

Eq. 7) holds.”   

In this explanation, Tinkham [34] mentioned the ratio U0/kBT, where kB is the Boltzmann 

constant, and U0 is a magnetic flux creep activation energy:  

𝑈0 = 𝛽 ⋅ 𝐵𝑐
2 𝜙0⋅𝜉

𝜇0⋅𝐵𝑎𝑝𝑝𝑙
         (5)  

where,  is (presumed ~1) a constant which absorbed all numerical factors, ,  is 

superconducting coherence length, Bappl is applied magnetic field, and Bc is the 

thermodynamic field:  
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𝐵𝑐 =
𝜙0

2⋅√2⋅𝜋⋅𝜆⋅𝜉
          (6)  

where  is the London penetration depth. After further consideration, Tinkham [34] reported, 

that:  

𝑈0

𝑘𝐵⋅𝑇
=

𝐴

𝐵𝑎𝑝𝑝𝑙
⋅ (1 −

𝑇

𝑇𝑐
𝑜𝑛𝑠𝑒𝑡)

3 2⁄

       (7)  

where A is a constant of Tesla unit. Thus, in overall, Eq. 3 can be considered as a good 

approximation for the Abrikosov vortex flux creep. However, as it is mentioned by Tinkham 

[34], there are no restrictions to use other fitting functions which approximate U0/kBT term in 

given superconductor.  

As we discussed in previous paper [31], there is a significant disadvantage of Eq. 7, 

which remains in recent proposal for parameter F given by Hirsch and Marsiglio [35]:  

𝐹 =
1

2⋅
𝐵𝑎𝑝𝑝𝑙

𝐵𝑐2(0)

         (8)  

that Eq. 3 cannot be used to fit 𝑅(𝑇, 𝐵𝑎𝑝𝑝𝑙 = 0) data, because the division by zero is 

prohibited. However, it was pointed out in Ref. 33, that there is no necessity for explicit use 

of 𝐵𝑎𝑝𝑝𝑙 in the expression for parameter F, because 𝐵𝑎𝑝𝑝𝑙 is known from experiment. Based 

on this, F can be free-fitting unitless value, which describe the sharpness of the transition.  

However, it should be stressed that as it was mentioned by Tinkham [34] that: “…some 

other similar function …” can be used as well. And based on this, particular deduced F values 

are linked to main fitting term of (𝐼0 (𝐹 ⋅ (1 −
𝑇

𝑇𝑐
𝑜𝑛𝑠𝑒𝑡)

3 2⁄

))

−2

 and as far as the goodness of 

fit is high, the fit will be in use to deduce 𝑇𝑐
𝑜𝑛𝑠𝑒𝑡 and Tc within established strict mathematical 

routine, while particular F value has no practical use.   

The fourth fitting term in Eq. 2, i.e. (𝑅𝑛𝑜𝑟𝑚 + (𝑘 − 𝑘1) ⋅ 𝑇𝑐
𝑜𝑛𝑠𝑒𝑡 + 𝑘1 ∙ 𝑇), represents a 

linear rise in the R(T,B) curve above the onset transition temperature, 𝑇𝑐
𝑜𝑛𝑠𝑒𝑡.  More details 

about different terms in Eq. 2 can be found in Ref. 33.   
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Thus, if R(T,B) fit to Eq. 2 has converged, Tc can be defined at any 
𝑅(𝑇)

𝑅(𝑇𝑐
𝑜𝑛𝑠𝑒𝑡)

 criterion, for 

which in this work we used the 𝑇𝑐,0.05 criterion:  

𝑅(𝑇)

𝑅(𝑇𝑐
𝑜𝑛𝑠𝑒𝑡)

= 0.05         (9)  

Primary reasons why the superconducting critical temperature for highly-compressed 

superconductors should be defined at as low as practically possible 
𝑅(𝑇)

𝑅(𝑇𝑐
𝑜𝑛𝑠𝑒𝑡)

 ratio were 

discussed elsewhere [36]. Here we only point out that the use of 𝑇𝑐
𝑜𝑛𝑠𝑒𝑡 criterion, which utilizes 

in some, but not in all, reports on highly-compressed superconductors, can be objected by 

experimental fact that the change in R(T) slope, or even sharp drop in R(T), is observable at 

many phase transitions in condensed matter when structural phase transitions occur [37-39]. 

Classical example for this is the change in R(T) slope at structural phase transitions - and -

 in iron [40,41].  

In addition to several fits for NRTS materials, which we showed in our previous work [33], 

in Fig. 1 we fit R(T,B=0) data for Fm-3m-LaH10 phase (P = 138 GPa) for which experimental 

data has been recently reported by Sun et al [26]. The fit has high quality (with goodness of fit 

R = 0.9981) and deduced 𝑇𝑐
𝑜𝑛𝑠𝑒𝑡 and 𝑇𝑐,0.05 are indicated in Fig. 1.  

All fits presented in the manuscript have been performed by utilizing the Levenberg-

Marquardt approach in non-linear fitting package of the Origin2017 software.  
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Figure 1.  R(T,B=0) data and fit to Eq. 1 for Fm-3m-LaH10 (P = 138 GPa), where raw data 

was reported by Sun et al [24].  95% confidence bars are shown by a pink shaded area; 

goodness of fit is R = 0.9981.  
 

 

III.  Results  

Fits to Eq. 2 of R(T,B) data for C2/m-SnH12 (P = 190 GPa) reported by Hong et al [28] are 

shown in Figs. 2,3, where Fig. 2 represents measurements performed at the “cooling” stage, 

while in Fig. 3 data and fits are shown for the “warming” stage. Despite a fact that R(T,B) 

curves of C2/m-SnH12 (P = 190 GPa) phase for “cooling” and “warming” stages are close to 

each other, these curves are not identical. For this reason, we deduce 𝑇𝑐,0.05(𝐵) for each stage 

with the purpose that full Bc2(T) dataset will characterize as complete as practically possible 

the C2/m-SnH12 phase.  Results of the analysis are shown in Table 1.   

It should be noted that R(T,B) data for C2/m-SnH12 (P = 190 GPa) reported by Hong et al 

[28] have linear ohmic term below transition temperature, which reflects the presence of 

metallic weak-links in the sample, which is accounted (as this mentioned above) by the term 

of (𝑅0 + 𝑘 ⋅ 𝑇) in Eq. 2.   
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Table 1. Deduced Tc,0.05(B) values for the “cooling” and the “warming” stages of C2/m-

SnH12 phase compressed at P = 190 GPa.  
 

Applied field, Bappl (Tesla)  Tc,0.05 (cooling stage) (K)  Tc,0.05 (warming stage) (K) 

0 63.5 65.1 

1 57.9  58.6 

2 52.4 53.3 

3 47.2 48.2 

5 35.9 36.4 

7 24.8 25.0 

 

 

In overall, all fits have high-quality, even for R(T,B=0) (Figs. 2,a and 3,a) for which the 

double transition is observed. For the latter the goodness of fit, R = 0.9986, while for the rest 

R > 0.9989.  

It should be clarified, that as far as we have defined the critical temperature, Tc, by the 

𝑅(𝑇)

𝑅(𝑇𝑐
𝑜𝑛𝑠𝑒𝑡)

= 0.05 criterion (Eq. 9 and Table I), there is no any longer a need to write full 

designation, i.e. 𝑇𝑐,0.05, for this value because otherwise there will be a need to use the same 

subscript for other parameters, i.e. Bc2,0.05(T), 0.05(0), 0.05(0), etc.. Thus, in further analysis we 

omit the use of 0.05 designation in the subscripts, because when (which is implemented in 

many reports) Tc and Bc2(T) are defined by 50% of normal state resistance criterion, the 

designation of used criterion, i.e. Tc,0.50 and Bc2,0.50(T), is always omitted (see, for instance, Ref. 

28 where the latter criterion was used).  
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Figure 2.  R(T,B) data and fits to Eq. 1 for C2/m-SnH12 (P = 190 GPa) measured at cooling 

stage (raw data reported by Hong et al [26]). Goodness of fit is: (a) 0.9985, (b) 0.9990; (c) 

0.9993; (d) 0.9996; (e) 0.9996; (f) 0.9996.  
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Figure 3.  R(T,B) data and fits to Eq. 1 for C2/m-SnH12 (P = 190 GPa) measured at warming 

stage (raw data reported by Hong et al [28]). Goodness of fit is: (a) 0.9987, (b) 0.9990; (c) 

0.9992; (d) 0.9996; (e) 0.9996; (f) 0.9996..  
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where kB is the Boltzmann constant, and the amplitude of temperature dependent 

superconducting gap, (T), is given by [43,44]:  

Δ(𝑇) = Δ(0) ∙ tanh [
𝜋∙𝑘𝐵∙𝑇𝑐

Δ(0)
∙ √𝜂 ∙

Δ𝐶

𝐶
∙ (
𝑇𝑐

𝑇
− 1)]      (11)  

where ΔC/C is the relative jump in electronic specific heat at Tc, and  = 2/3 for s-wave 

superconductors.  

Eqs. 10,11 were used to extract ξ(0), Δ(0), Tc and 
Δ𝐶

𝐶
 in a variety of superconductors, for 

instance, in highly-compressed H3S [42], magic-angle twisted bilayer graphene [46], V3Si 

[47], Nd0.8Sr0.2NiO2 [48] and iron-based superconductors [47]. Here we applied these 

equations to extract ξ(0), Δ(0) and 
2⋅Δ(0)

𝑘𝐵⋅𝑇𝑐
 in C2/m-SnH12 (P = 190 GPa).  

Eqs. 10,11 have four-free fitting parameters, (0), (0), Tc, and C/C, i.e. the same 

number as one in the standard fitting function for the pinning force density, 𝐹𝑝(𝐵𝑎𝑝𝑝𝑙), [48-

51]:  

𝐹𝑝(𝐵𝑎𝑝𝑝𝑙) = 𝐹𝑝,𝑚𝑎𝑥 ⋅ (
𝐵𝑎𝑝𝑝𝑙

𝐵𝑐2
)
𝑝

⋅ (1 −
𝐵𝑎𝑝𝑝𝑙

𝐵𝑐2
)
𝑞

     (12)  

where 𝐹𝑝,𝑚𝑎𝑥, 𝐵𝑐2, p and q are free-fitting parameters. Thus, Eqs. 9,10 can be characterized as 

a conventional mathematical tool in terms of the number of free-fitting parameters, where 

each deduced parameter has clear physical meaning.  

It needs to be pointed out that R(T,B) curves were measured at only six Bappl values, i.e. 

Bappl = 0,1,2,3,5,7 T, which implies that conventional Bc2(T) fit to Eqs. 10,11, where all four 

parameters are free, needs to be adopted for  given Bc2(T) dataset (it should be noted that 

usually [42,47] Bc2(T) datasets have up to 30 raw upper critical field data). Thus, there is a 

need to reduce the number of free-fitting parameters in Eqs. 10,11.  We used to fix 
Δ𝐶

𝐶
 value 

in our previous works [52-54] when experiments were performed over either a narrow 

temperature range, either at limited set of temperatures. Thus, we assumed that the relative 
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jump in electronic specific heat at Tc is equal to the Bardeen-Cooper-Schrieffer theory weak-

coupling limit for s-wave superconductors [43,44,55,56]:  

Δ𝐶

𝐶
= 1.43.          (13)  

That left in this case just Tc, (0) and (0) as free fitting parameters in Eqs. 10,11. Bc2(T) 

data fit to the restricted Eqs. 10,11 is shown in Fig. 4, where it can be seen that the fit has 

narrow 95% uncertainty bands and deduced parameters are 𝑇𝑐 = 64.6 ± 0.3 𝐾, ξ(0) = 6.3 ±

0.1 𝑛𝑚, Δ(0) = 9.15 ± 0.51 𝑚𝑒𝑉, and  

2⋅Δ(0)

𝑘𝐵⋅𝑇𝑐
= 3.28 ± 0.18.         (14)  

 

Figure 4.  The upper critical field data, Bc2(T), and data fit to Eqs. 3,4 for C2/m-SnH12 (P = 

190 GPa). 
Δ𝐶

𝐶
 was fixed to BCS weak-coupling limit of 1.43. 95% confidence bars are shown 

by a green shaded area; fit quality is R = 0.9983.  
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IV. Comparison of C2/m-SnH12 with conventional superconductors  

It might be appeared to be strange that deduced ratio of the gap amplitude to the transition 

temperature 
2⋅Δ(0)

𝑘𝐵⋅𝑇𝑐
= 3.28 ± 0.18 is lower than s-wave BCS weak coupling limit of 

[43,44,55,56]:  

2⋅Δ(0)

𝑘𝐵⋅𝑇𝑐
= 3.53         (15)  

However, if we assume that C2/m-SnH12 (P = 190 GPa) has the Coulomb pseudopotential 

parameter, * = 0.13, which is weighted average value within many first principle 

calculations of NRTS materials (where * = 0.10-0.16 [5,6,9,10,18,25,29,57-71]), and, what 

is more important, that * = 0.13 was one of probable values used by Esfahani et al [29] in 

their predictive calculations for C2/m-SnH12 phase, than the ratio of 
𝑘𝐵⋅𝑇𝑐

ℏ⋅𝜔𝑙𝑛
 has got a value:  

𝑘𝐵⋅𝑇𝑐

ℏ⋅𝜔𝑙𝑛
=

83

991 
= 0.0838.        (16)  

where ℏ =
ℎ

2⋅𝜋
 is the reduced Planck constant, and 𝜔𝑙𝑛 = 𝑒𝑥𝑝 [

∫
𝑙𝑛(𝜔)

𝜔
⋅𝐹(𝜔)⋅𝑑𝜔

∞
0

∫
1

𝜔
⋅𝐹(𝜔)⋅𝑑𝜔

∞
0

], where 𝐹(𝜔) is 

the phonon density of states.  

In result, the plot of 
2⋅Δ(0)

𝑘𝐵⋅𝑇𝑐
 vs 

𝑘𝐵⋅𝑇𝑐

ℏ⋅𝜔𝑙𝑛
 (which is often considered as an universal plot for 

phonon-mediated superconductors [72-75]), C2/m-SnH12 phase falls into the lower branch 

(Fig. 5), where its NRTS contemplate H3S is located [76].   

It should be stressed, that in Fig. 5,a both fitting curves (red and cyan) and their 95% 

confidence band were not altered from ones in Fig. 4 in Ref. 76, because new fits were not 

performed (more details about these branches can be found in Ref. 76). It can be seen an 

unprecedented accuracy for the positioning of C2/m-SnH12 phase in the lower branch. It 

should be noted that data on the upper branch in Fig. 5 with a very high accuracy can be 

described by simple elegant equation (Eq. 24 in Ref. 76):  
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2⋅Δ(0)

𝑘𝐵⋅𝑇𝑐
= 3.53 ⋅ (1 + 3.53 ⋅ (

𝑘𝐵⋅𝑇𝑐

ℏ⋅𝜔𝑙𝑛
)
1.29
)      (17)  

In Fig. 5,b we fit data for lower branch (i.e. for Pb0.5Bi0.5, Pb0.75Bi0.25, Ga, Bi, H3S and 

C2/m-SnH12) to equation [76]:  

2⋅Δ(0)

𝑘𝐵⋅𝑇𝑐
= 𝐴 ⋅ (1 + 3.53 ⋅ (

𝑘𝐵⋅𝑇𝑐

ℏ⋅𝜔𝑙𝑛
)
1.29
)      (18)  

where A is free fitting parameter. It can be seen that 95% confidence band becomes narrower 

in Fig. 5,b in comparison with Fig. 5,a. Deduced parameter A = 2.86 ± 0.05 is practically 

undistinguishable from deduced A = 2.87 ± 0.06 reported in Ref. 76 for this parameter.  

 

Figure 5.  Full dataset of 
2⋅Δ(0)

𝑘𝐵⋅𝑇𝑐
 vs 

𝑘𝐵⋅𝑇𝑐

ℏ⋅𝜔𝑙𝑛
 from Table IV of Ref. 74 and data points for highly-

compressed H3S and SnH12.  Fits to Eq. 17 (blue data points, red curve) and Eq. 18 (cyan 

curve) are shown. a - SnH12 does not include in the fit (the fit is a clone from one in Fig. 4 of 

Ref. 59).  b - SnH12 does include in the fit. 𝐴 = 2.86 ± 0.05 and R = 0.948. 95% confidence 

bars are shown by a cyan shaded area.  
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IV. C2/m-SnH12 in the Uemura plot  

Uemura et al [31,32] reported empirical discovery that all unconventional superconductors, 

i.e. heavy fermions, cuprates, fullerenes and, later, to this list were added the iron-based 

superconductors [76,78] and hydrogen-rich superconductors [42,79-81], have the ratio of the 

superconducting transition temperature, Tc, to the Fermi temperature, TF, within a narrow 

range:  

0.01 ≲
𝑇𝑐

𝑇𝐹
≲ 0.05,         (19)  

while conventional superconductors have much smaller 
𝑇𝑐

𝑇𝐹
 ratio:  

𝑇𝑐

𝑇𝐹
≲ 0.001          (20)  

It should be noted that maximal value of 
𝑇𝑐

𝑇𝐹
= 0.22 is attributed Bose-Einstein condensates 

(BEC). Thus, further step to characterize the superconducting state in C2/m-SnH12 phase (P = 

190 GPa) is to find the 
𝑇𝑐

𝑇𝐹
 ratio for this compound.   

The Fermi temperature can be calculated by an equation [76]:  

𝑇𝐹 =
𝜋2

8∙𝑘𝐵
∙  (1 + 𝜆𝑒−𝑝ℎ) ∙ 𝜉

2(0) ∙ (
𝛼∙𝑘𝐵∙𝑇𝑐

ℏ
)
2

,     (21)  

where α =
2∙Δ(0)

𝑘𝐵∙𝑇𝑐
, and 𝜆𝑒−𝑝ℎ is the electron-phonon coupling constant. For calculations we 

utilized 𝜆𝑒−𝑝ℎ = 1.25 reported by Esfahani et al [29] who computed by first-principles 

calculations several parameters for C2/m-SnH12 phase. The rest of parameters in Eq. 21, i.e. α, 

Tc, (0), we deduced from the analysis of Bc2(T) data above.  

In a result, calculated Fermi temperature is 𝑇𝐹 =  5,658 ± 906 𝐾, and in the Uemura plot 

(Fig. 6), C2/m-SnH12 phase falls into unconventional superconductors band in a close 

proximity to YBa2Cu3O7- cuprates and in the same Tc/TF band where all NRTS counterparts 

are located. To date, an understanding that NRTS materials exhibit unconventional 
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superconductivity is becoming more acknowledged [18,83,84], because if the superconducting 

transition temperature, Tc, in hydrogen-rich compounds was reasonably well predicted in some 

(and, what is important to stress, not in all) hydrogen-rich compounds, other calculated 

superconducting parameters, in particular, the ground state upper critical field and the ground 

state London penetration depth, are different from experimental values in several times.  

 

Figure 6.  Tc vs TF plot where the C2/m-SnH12 (P = 190 GPa) phase is shown together with 

main superconducting families: elemental superconductors, heavy-fermions, pnictides, 

cuprates, and near-room-temperature superconductors. Reference on original data can be 

found in Refs. 31,32,42,77-82. Boundary lines for BCS superconductors, for Bose-Einstein 

condensates and for Tc/TF = 0.05, 0.01 are shown.  

 

V. Conclusions  

Recently, Hong et al [28] discovered a new highly-compressed C2/m-SnH12 superhydride 

phase which exhibits the superconducting transition temperature of Tc = 70 K at pressure of 

190 GPa.  Here we analyse the magnetoresistance data in this phase and deduce the ground 

state superconducting gap of (0) = 9.15 ± 0.51 meV and the ratio of 2(0)/kBTc = 3.28 ± 

0.18. Taking in account results of first principles calculations for this phase performed by 
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Esfahani et al [29], we calculate the Fermi temperature 𝑇𝐹 =  5,658 ± 906 𝐾 in this phase, 

which means that in the Uemura plot [31,32], this new superhydride falls to unconventional 

superconductors band, where all other hydrogen-rich counterparts, including near-room-

temperature superconductors, are located.  
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