On Automorphisms of a Distance-Regular Graph with Intersection Array \(\{33, 30, 15; 1, 2, 15\}\)

Corresponding Member of the RAS A. A. Makhnev

Received March 4, 2014

DoI: 10.1134/S1064562414070291

We consider undirected graphs without loops or multiple edges. Given a vertex \(a\) in a graph \(\Gamma\), let \(\Gamma_i(a)\) denote the \(i\)-neighborhood of \(a\), i.e., the subgraph induced by \(\Gamma\) on the set of all its vertices that are a distance of \(i\) away from \(a \). Let \(\{a\} = \Gamma_1(a)\) and \(a^+ = \{a\} \cup \{a\}\).

The degree of a vertex is defined as the number of vertices in its neighborhood. \(\Gamma\) is called a regular graph of degree \(d\) if the degree of any vertex in \(\Gamma\) is \(d\) is called a regular graph of degree \(d\). An amply regular graph of diameter 2 is said to be strongly regular.

Proposition 1. Let \(\Gamma\) be a distance-regular graph of diameter larger than 2 on \(v \leq 4096\) vertices. If \(\lambda = 2\), then one of the following assertions holds:

1. \(\Gamma\) is a primitive graph with the intersection array \(\{6, 3, 3; 1, 1, 2\}, \{9, 6, 3; 1, 2, 3\}, \{12, 9, 9; 1, 1, 4\}, \{15, 12, 6; 1, 1, 10\}, \{18, 15, 9; 1, 1, 10\}, \{19, 16, 8; 1, 2, 8\}, \{24, 21, 3; 1, 1, 18\}, \{33, 30, 15; 1, 2, 15\}, \{35, 32, 8; 1, 2, 28\}, \{42, 39, 1; 1, 1, 42\}, \{51, 48, 8; 4, 36\}, \{51, 48, 24; 1, 2, 24\}, \{55, 52, 34; 1, 1, 22\}, \{58, 55, 8; 1, 2, 44\}, \{60, 57, 16; 1, 4, 30\}, \{60, 57, 32; 1, 4, 18\}, \{63, 60, 10; 1, 2, 54\}, \{63, 60, 49; 1, 4, 15\}, \{68, 65, 32; 1, 4, 40\}, \{75, 72, 8; 1, 2, 60\}, \{75, 72, 42; 1, 4, 50\}, \{75, 72, 31; 1, 8, 45\}, \{80, 77, 61; 1, 7, 20\}, \{90, 87, 60; 1, 1, 18\}, \{99, 96, 12; 1, 4, 88\}, \{99, 96, 20; 1, 4, 72\}, \{99, 96, 6; 1, 6, 88\}, \{120, 117, 5; 1, 5, 108\}, \{143, 140, 34; 1, 7, 110\}, \{147, 144, 39; 1, 12, 117\}, or \(\{224, 221, 32; 1, 16, 208\}\).

2. \(\Gamma\) is an antipodal graph with \(\mu = 2\), the intersection array \(\{2 + r, 1, 2; 1, 2, 2r + 1\}, \ r \in \{2, 3, \ldots, 44\} - \{10, 16, 28, 34, 38\}, \text{ and } v = 2(2r + 1)\).

3. \(\Gamma\) is an antipodal graph with \(\mu \geq 3\) and the intersection array \(\{1, 5, 12; 1, 4, 15\}, \{18, 15, 1; 1, 5, 18\}, \{27, 24, 1; 1, 8, 27\}, \{35, 32, 1; 1, 4, 35\}, \{45, 42, 1; 1, 6, 45\}, \{42, 39, 1; 1, 3, 42\}, \{63, 60, 1; 1, 4, 63\}, \{75, 72, 1; 1, 12, 75\}, \{99, 96, 1; 1, 4, 99\}, \{108, 105, 1; 1, 5, 108\}, \{143, 140, 1; 1, 20, 143\}, \{147, 144, 1; 1, 16, 147\}, or \{171, 168, 1; 1, 12, 171\}.

4. \(\Gamma\) is a primitive graph with the intersection array \(\{6, 3, 3; 1, 1, 2\}, \{12, 9, 6; 3, 1, 2, 4, 5\}, \{21, 18, 12, 4; 1, 1, 6, 21\}, \{15, 12, 9, 6, 3; 1, 2, 3, 4, 5\}, \{6, 3, 3, 3, 3; 1, 1, 1, 1, 2\}, \text{ or } \{18, 15, 12, 9, 6, 3; 1, 2, 3, 4, 5\}.

The automorphisms of distance-regular graphs with intersection arrays \(\{2r + 1, 2r - 1, 2r + 1\}\), where \(r \leq 43\) and \(r\) is not a prime power were found in [2]. In this paper, we study the automorphisms of a distance-regular graph with intersection array \(\{33, 30, 15; 1, 2, 15\}\). The number of vertices in such a graph is \(v = 1 + 30 + 495 + 495 = 1024\), and it has the spectrum...
Let P_i be a matrix with p_{ij}^i placed at (j,i). Then the eigenvalues $p_i(0), \ldots, p_i(d)$ of P_i are the eigenvalues of Γ with multiplicities $m_0 = 1, m_1, \ldots, m_d$. The matrices P and Q with $p_{ij}(i)$ and $q_{ij}(i)$ placed at (i,j) are called the first and second eigenvalue matrices of the group and are related by the equality $PQ = QP = vI$.

In the usual manner, the permutation representation of the group $G = \text{Aut}(\Gamma)$ at the vertices of Γ gives a matrix representation ψ of G in $GL(v, \mathbb{C})$. The space \mathbb{C}^v is the orthogonal direct sum of G-invariant eigenspaces W_0, W_1, \ldots, W_d of the adjacency matrix $A = A_1$ of Γ. For any $g \in G$, the matrix $\psi(g)$ commutes with A. Therefore, the subspace W_i is $\psi(G)$-invariant. Let χ_i be a character of the representation $\psi_{|W_i}$. Then, for $g \in G$, we obtain

$$\chi_i(g) = \psi^{-1}(x) \sum_{j=0}^d Q_{ij} \chi_j(g),$$

where $\alpha_j(g)$ is the number of points x in X such that $(x,x^g) \in R_i$ (see [3, Section 3.7]).

Lemma 2. Let Γ be a distance-regular graph with an intersection array $(33, 30, 15; 1, 2, 15)$ and $G = \text{Aut}(\Gamma)$. If $g \in G$, χ_1 is a character of the projection of the representation ψ onto a subspace of dimension 495, then

$$\chi_1(g) = \frac{13\alpha_9(g) + 4\alpha_1(g) + \alpha_2(g)}{128} - 10,$$

$$\chi_2(g) = \frac{15\alpha_9(g) - \alpha_3(g)}{32} + 15.$$

If $|g| = p$ is a prime number, then $\chi_1(g) - 198$ and $\chi_2(g) - 495$ are divided by p.

Proof. Let Γ be a distance-regular graph with an intersection array $(33, 30, 15; 1, 2, 15)$. We have

$$Q = \begin{pmatrix}
1 & 1 & 1 \\
198 & 54 & 6 \\
495 & 15 & -17 \\
330 & -70 & 10 & -6
\end{pmatrix}.$$
In view of the equality \(\alpha(g) + \alpha(\gamma) = 1024 - \alpha(g) - \alpha(\gamma) \), we have \(\chi_2(g) = \frac{15\alpha(g) - \alpha(\gamma)}{32} + 15 \).

The other assertions of the lemma follow from Lemma 1 in [4].

Throughout the rest of this paper, we assume that \(\Gamma \) is a distance-regular graph with intersection array \(\{33, 30, 15; 1, 2, 15\} \), \(G = \text{Aut}(\Gamma) \), \(g \) is an element of prime order \(p \) from \(G \), and \(\Omega = \text{Fix}(g) \).

Lemma 3. The following assertions hold:

1. If \(\Omega \) is an empty graph, then \(p = 2 \), \(\alpha(g) = 64l \), and \(\alpha(\gamma) = 64s - 16l \).

2. If \(\Omega \) is an \(n \)-clique, then either

 (i) \(n = 1 \), \(p = 11 \), \(\alpha(g) = 143 + 352l \), and \(\alpha(\gamma) = 121 + 352l - 88l \) or \(p = 3 \), \(\alpha(g) = 15 + 96l \), and \(\alpha(\gamma) = 96l + 57 - 24l \) or

 (ii) \(n = 4 \), \(p = 5 \), \(\alpha(g) = 60 + 160l \), \(\alpha(\gamma) = 100 + 640l - 40l \); or \(p = 3 \), \(\alpha(g) = 60 + 96l \), and \(\alpha(\gamma) = 384l + 228 - 24l \) or \(p = 2 \), \(\alpha(g) = 60 + 64l \), and \(\alpha(\gamma) = 64l + 28 - 16l \).

3. If \(\Omega \) is not an empty graph or a clique and \(p > 2 \), then \(\Omega \) is an amply regular graph with \(\lambda_{\Omega} = \mu_{\Omega} = 2 \) and \(p = 3, 5 \).

Proof. Let \(\Omega \) be an empty graph. Since \(v = 1024 \), we have \(p = 2 \). Furthermore, the number \(\chi_2(g) - 495 \) is even. Therefore, \(\alpha(g) = 64l \). From this, \(\chi_2(g) = \frac{\alpha(g) + 16l}{32} - 10 \) and \(\alpha(\gamma) = 64s - 16l \).

Let \(\Omega \) be an \(n \)-clique. If \(n = 1 \), then \(p \) divides 33 and 495. Therefore, \(p = 3, 11 \). If \(p = 11 \), we have \(\chi_2(g) = \frac{15 - \alpha\gamma(\gamma)}{32} + 15 \). Therefore, \(\alpha(g) = 143 + 352l \), where \(l \leq 2 \). Furthermore, \(\chi_2(g) = \frac{13 + 4\alpha\gamma(\gamma) + 143 + 352l}{128} \) - 10. Therefore, \(\alpha(g) = 121 + 352l - 88l \).

If \(p = 3 \), we have \(\chi_2(g) = \frac{15 - \alpha\gamma(\gamma)}{32} + 15 \).

Therefore, \(\alpha(g) = 15 + 96l \), where \(l \leq 10 \). Furthermore, \(\chi_2(g) = \frac{13 + 4\alpha\gamma(\gamma) + 15 + 96l}{128} \) - 10. Therefore, \(\alpha(g) = 96l + 57 - 24l \).

If \(n = 2 \), then \(p = 2 \), a contradiction to the fact that 495 is not divided by 2.

If \(n = 4 \), then \(p \) divides 30. For \(p = 5 \), we have \(\chi_2(g) = \frac{60 - \alpha\gamma(\gamma)}{32} + 15 \). Therefore, \(\alpha(g) = 60 + 160l \), where \(l \leq 6 \). Furthermore, \(\chi_2(g) = \frac{52 + 4\alpha\gamma(\gamma) + 60 + 160l}{128} \) - 10. Therefore, \(\alpha(g) = 100 + 640l - 40l \). If \(p = 3 \), we have \(\chi_2(g) = \frac{60 - \alpha\gamma(\gamma)}{32} + 15 \). Therefore, \(\alpha(g) = 60 + 96l \), where \(\frac{32}{l} \leq 10 \). Furthermore, \(\chi_2(g) = \frac{52 + 4\alpha\gamma(\gamma) + 60 + 96l}{128} \) - 10. Therefore, \(\alpha(g) = 72 + 192l \) and \(\alpha(g) = 72 + 192l \).

Let \(\Omega \) be neither an empty graph nor a clique and let \(p > 2 \). Then \(\lambda_{\Omega} = \mu_{\Omega} = 2 \). Therefore, \(\Omega \) is an amply regular graph of degree \(k' \) on \(v' \) vertices.

If \(p \geq 17 \), then \(k' = 33 - p \) and \(v' \geq 1 + (33 - p) + (33 - p)(30 - p) \). If \(p = 29 \), we have \(k' = 4 \). However, a connected locally quadrilateral graph is an octahedron, a contradiction to \(\mu_{\Omega} = 2 \). If \(p = 23 \), we have \(k' = 10 \) and \(v' \geq 1 + 70 + 10 \cdot \frac{7}{2} (495 - 12) = 23, 24 \), a contradiction to \(|\Gamma - \Omega| \geq 58 \cdot 23 \). If \(p = 19 \), we have \(k' = 4 \) and \(v' \geq 1 + 14 + 14 \cdot \frac{11}{2} \), a contradiction to \(|\Gamma - \Omega| \geq 26 \cdot 12 \). If \(p = 13 \), then \(\Omega \) is a regular graph of degree 7 or 20. Furthermore, 495 – 1 is divided by 13. Let \(a, b \in \Omega \) and \(d(a, b) = 3 \). Since \(p^3 = 236 \), \(\Omega(a) \cap \Omega(b) \) contains at least two vertices. If \(\Omega \) is a graph of degree 20, then \(v' \geq 1 + 19 + \frac{20 \cdot 2}{113} \), a contradiction to \(|\Gamma - \Omega| \geq 26 \cdot 12 \). If \(p = 11 \), then \(\Omega \) is a regular graph of degree 11 or 22. If \(\Omega \) contains a vertex of degree 22, then \(v' \geq 1 + 33 + \frac{22 \cdot 19}{2} \), a contradiction to \(|\Gamma - \Omega| \geq 26 \cdot 12 \). Therefore, \(\Omega \) is a regular graph of degree 11, \(v' \geq 1 + 11 + 44 \), and the number of edges between \(\Omega \) and \(\Gamma - \Omega \) is at least 56 · 22, a contradiction.

If \(p = 7 \), then \(\Omega \) is a regular graph of degree 5, 12, 19, or 26. Furthermore, 495 – 5 is divided by 7. Let \(a, b \in \Omega \) and \(d(a, b) = 3 \). Since \(p^5 = 236 \), we conclude that \(\Omega(a) \cap \Omega(b) \) contains at least five vertices and \(|\Omega(a) \cap \Omega(b)| \geq 12 \). If \(\Omega \) contains a vertex \(a \) of degree 5, then...
Ω is an icosahedron graph, a contradiction to the fact that $1024 - 12$ is not divided by 7.

If Ω contains a vertex of degree 26, then $\nu' = 1 + 26 + \frac{26 \cdot 23}{2} + 12 = 338$, a contradiction to $1024 \geq |\Gamma| \geq 338 - 8$.

If Ω contains a vertex of degree 19, then $\nu' = 1 + 19 + \frac{19 \cdot 9}{2} + 12$, a contradiction to $1024 \geq |\Gamma| \geq 118 \cdot 15$.

Therefore, Ω is a regular graph of degree 12, $\nu' \geq 1 + 12 + 54 + 12 = 79$, and the number of edges between Ω and Γ − Ω is at least 79 · 21, a contradiction.

The lemma and the theorem are proved.

Lemma 4. Let Ω be an amply regular graph with parameters $(\nu', k', 2, 2)$. Then the following assertions hold:

1. The number p is not equal to 5.

2. If $p = 3$, then the degree of Ω is equal to 9 and Ω is a distance-regular graph with intersection array $(9, 6, 1, 1, 2, 9)$ or the degree of Ω is equal to 6 and Ω is a strongly regular graph with parameters $(16, 6, 2, 2)$.

Proof. Let Ω be an amply regular graph with parameters $(\nu', k', 2, 2)$.

Let $p = 5$. Then Ω is a regular graph of degree 3, 8, 13, 18, 23, or 28. If Ω contains a vertex a of degree 3, then Ω is a 4-clique, a contradiction.

If Ω contains a vertex of degree 28, then $\nu' \geq 1 + 28 + \frac{28 \cdot 25}{2}$, a contradiction to $1024 \geq |\Gamma| \geq 379 \cdot 5$.

The cases when Ω contains a vertex of degree 23, 18, or 13 are treated in a similar manner.

Thus, Ω is a graph of degree 8. The neighborhood of a vertex in Ω is an octagon or the union of a triangle and a pentagon. If $d(\Omega) = 2$, then Ω is a strongly regular graph with parameters (29, 8, 2, 2), a contradiction. Let $a, b \in \Omega$ and $d(a, b) = 3$. Since $p_{33}^3 = 236$, we conclude that $\Omega_2(a) \cap \Omega_2(b)$ contains a vertex b' and the degree of the graph $\Omega_2(a)$ is equal to 3.

Now $\nu' > 1 + 8 + \frac{8 \cdot 5}{2} = 29$ and $|\Omega \cap \Gamma_3(a)| \geq 10$. If $|\Omega \cap \Gamma_3(a)| > 15$, then $1024 \geq |\Gamma| \geq 44 \cdot 25$, a contradiction. Therefore, $|\Omega \cap \Gamma_3(a)| = 10$ and each vertex in $\Omega_2(a)$ is adjacent to no or five vertices from $\Omega_3(a)$. Let A be the set of vertices in $\Omega_2(a)$ that are adjacent to five vertices in $\Omega_3(a)$, and let B be the set of vertices from $\Omega_2(a)$ that are adjacent to no vertex in $\Omega_3(a)$. Then $|A| = |B| = 5$ and the number of edges between A and B is at most 5, a contradiction to the fact that B is a clique.

Let $p = 3$. Then Ω is a regular graph of degree 3, 6, 9, 12, 15, 18, 21, 24, 27, or 30. In view of [5, Proposition 1.9.1], we have $c_{2}(a, b) \geq 3$ for any vertices $a, b \in \Omega$ with $d(a, b) = 3$. If Ω contains a vertex a of degree 3, then Ω is a 4-clique, a contradiction.

If Ω contains a vertex of degree 30, then $\nu' \geq 1 + 30 + \frac{30 \cdot 27}{2}$, a contradiction to $1024 \geq |\Gamma| \geq 436 \cdot 4$.

The cases when Ω contains a vertex of degree 27, ..., 12 are considered in a similar fashion.

If Ω contains a vertex of degree 9, then $\nu' \geq 1 + 9 + \frac{9 \cdot 6}{2} = 37$ and the neighborhood of a vertex in Ω is a nonagon, the union of a hexagon and a triangle, or the union of three triangles. If $d(\Omega) = 2$, then Ω is a strongly regular graph with parameters $(37, 9, 2, 2)$, a contradiction. Let $a, b \in \Omega$ and $d(a, b) = 3$. Since $p^{33}_{33} = 236$, we conclude that $\Omega_3(a) \cap \Omega_3(b)$ contains two vertices.

If $|\Omega_3(a)| \geq 6$, we have $1024 \geq |\Gamma| \geq 42 \cdot 25$, a contradiction. Therefore, Ω is a distance-regular graph with the intersection array $(9, 6, 1, 1, 2, 9)$.

If Ω is a graph of degree 6, then $\nu' \geq 1 + 6 + \frac{6 \cdot 3}{2} = 16$ and the neighborhood of a vertex in Ω is a hexagon or the union of two triangles. If $d(\Omega) = 2$, then Ω is a strongly regular graph with parameters $(16, 6, 2, 2)$. Let $c \in \Omega_3(a)$. Then the vertices from $[a] \cap [c]$ are adjacent to distinct vertices from [c]. Therefore, [c] does not intersect $\Omega_3(a)$.

Lemma 5. If Γ is an edge-symmetric graph, then the following assertions hold:

1. Ω does not contain [a] for any vertex $a \in \Omega$.

2. The solvable radical of the group G coincides with $O_3(G)$; if $Q = O_3(G) \neq 1$, then each involution from Q acts on Γ without fixed points and either $|Q| = 2^{10}$ or $|Q| < 2^5$.

2. The socle \overline{G} of the group $G = G/O_3(G)$ is isomorphic to $L_2(11), M_{11}, M_{12}$, or $U_4(2)$.

Proof. Let $[a] \subset \Omega$ for some vertex $a \in \Omega$. Then, for any vertex $u \in \Gamma - \Omega$, we have $[a] \cap \Omega = [a] \cap [u] = \{c, d\}$, a contradiction to $|c] \cap [d| \geq 3$.

Since $\nu = 2^{10}$, the solvable radical of G coincides with $O_2(G)$. Let $Q = O_2(G) \neq 1$. Then Q_a is a normal subgroup of G_a that fixes a vertex $b \in [a]$. Since G_a is transitive on $[a]$, we have $[a] \subset \Omega$ for any involution $g \in Q_a$. By assertion (1), $Q_a = 1$. Assume that $1 < |Q_a| < 2^{10}$. Then the orbit dQ is a coclique for any ver-
tex $a \in \Gamma$. In a regular graph with the least eigenvalue $-m$, the order of a coclique is at most $\frac{\sqrt{m}}{k + m}$. Therefore, $|Q| = |a^0| \leq \frac{128 \cdot 7}{5}$.

Recall that, by the theorem, $\pi(G) \subseteq \{2, 3, 5, 11\}$ and, by assumption, $|G|$ is divided by $2^{10} \cdot 33$. In view of [6, Table 1], the group \overline{T} is isomorphic to $L_2(11)$, M_{11}, M_{12}, or $U_3(2)$.

Let us complete the proof of the corollary. In the case of $L_2(11)$, we have $|O_2(G)| = 2^{10}$ (otherwise, $|O_2(G)| = 2^7$, $G/O_2(G) = PGL_2(11)$, and G does not contain subgroups of index 2^{10}), $G_\alpha = L_2(11)$, $PGL_2(11)$ does not contain subgroups of index 33. The cases of M_{11} and M_{12} are treated in a similar manner. In the case of $U_3(2)$, we have $|O_2(G)| = 2^{10}$ (otherwise, G does not contain subgroups of index 2^{10}), $G_\alpha = U_3(2)$, $\text{Aut}(U_3(2))$ does not contain subgroups of index 33. The corollary is proved.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14-11-00061.

REFERENCES

Translated by I. Ruzanova