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which deals with foliage trees (that is, set-theoretic trees with a ‘leaf’ at each node). 
Then using this operation we modify a π-tree of a space and get a π-tree for its 
subspace.
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1. Introduction

We study topological spaces that have a π-tree; this notion is equivalent to the notion of a Lusin π-base, 
which was introduced in [1] (see details in Definition 10 and Remark 11). The Sorgenfrey line and the Baire 
space N (that is, ωω with the product topology) are examples of spaces with a π-tree [1]. Every space 
that has a π-tree shares many good properties with the Baire space. One reason for this is expressed in 
Lemma 13, another two are the following: if a space X has a π-tree, then X can be mapped onto N by a 
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continuous one-to-one map [1] and also X can be mapped onto N by a continuous open map [1] (hence X
can be mapped by a continuous open map onto an arbitrary Polish space).

In this paper we prove Theorem 44, which states that if a space X has a π-tree and Y ⊆ X is the 
complement of a σ-compact subset of X, then Y also has a π-tree. This result reflects the following property 
of the Baire space: if Y ⊆ N is the complement of a σ-compact subset of N , then Y is homeomorphic to N
(this property of N can be easily derived from the Alexandrov–Urysohn characterization of the Baire space 
and from the characterization of its Polish subspaces — see Theorems 3.11 and 7.7 in [2]).

Theorem 44 is a corollary to Theorem 41, which in combination with Lemma 13 allows to find many 
more subspaces Y of a space X with a π-tree such that Y also has a π-tree; for example, a dense Y such 
that ∣X∖Y ∣ = 2ℵ0 (Theorem 44 does not allow to find such Y in the Sorgenfrey line because every σ-compact 
subset of the Sorgenfrey line is at most countable). In contrast to Theorems 41 and 44, a dense open subspace 
Y of a space X that has a π-tree can be without π-tree even if X is separable metrizable (this result is in 
preparation for publication). Both Theorems 41 and 44 are corollaries to Theorem 37, which is the main 
technical result of this paper.

2. Notation and terminology

We use standard set-theoretic notation from [3,4], according to which ω = the set of natural numbers =
the set of finite ordinals = the first limit ordinal = the first infinite cardinal = ℵ0, and each ordinal is equal 
to the set of smaller ordinals, so that n = {0, . . . , n − 1} for all n ∈ ω. We use terminology from [5] when we 
work with (topological) spaces. Also we use several less common notations:

Notation 1. The symbol ∶= means “equals by definition”; the symbol ∶←→ is used to show that an expression 
on the left side is the abbreviation for expression on the right side;

✎ x ⊂ y ∶←→ x ⊆ y and x ≠ y;
✎ ∀v ≠ w ∈ A ϕ(v, w) ∶←→ ∀v, w ∈A [v ≠ w → ϕ(v, w) ];
✎ ∃ v ≠ w ∈ A ϕ(v, w) ∶←→ ∃ v, w ∈A [v ≠ w and ϕ(v, w) ];
✎ A ≡ ⊔λ∈Λ Bλ ∶←→ A = ⋃λ∈Λ Bλ and ∀λ ≠ λ′ ∈ Λ [ Bλ ∩Bλ′ = ∅ ];
✎ A ≡ B0 ⊔ . . . ⊔Bn ∶←→ A ≡ ⊔ i∈{0,...,n}Bi.

When we work with sequences, we use the following notation:

Notation 2. Suppose that α, β are ordinals, n ∈ ω, and s, t are transfinite sequences (that is, s and t are 
functions whose domains are ordinals). Then:

✎ lengths ∶= the domain of s;
✎ ⟨ r0, . . . , rn−1⟩ ∶= the sequence r such that lengthr = n and r(i) = ri for all i < n;

in particular, ⟨⟩ ∶= the empty sequence (= the empty set);
✎ xA ∶= the set of functions from x to A;

in particular, 0A = {⟨⟩};
✎ <αA ∶= ⋃β<α

βA;
in particular, <ωA is the set of finite sequences in A;

✎ if s = ⟨s0, . . . , sn−1⟩, then
s ̂⟨ a ⟩ ∶= ⟨s0, . . . , sn−1, a⟩;

✎ s ↾x ∶= the restriction of s to x;
in particular, s ↾0 = ⟨⟩ for any s;

✎ note that
s ⊆ t iff lengths ⩽ length t and s = t ↾ lengths.
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Also we work with partial orders and we use the following notation:

Notation 3. Suppose that P = (Q, <) is a strict partially ordered set; that is, < is irreflexive and transitive 
on Q. Let x, y ∈ Q and A, B ⊆ Q. Then:

✎ nodesP = nodes(Q, <) ∶= Q

(we use the word node because we intend to work with trees);
✎ x <P y ∶←→ x < y;
✎ x ⩽P y ∶←→ x <P y or x = y;
✎ x ∥P y ∶←→ x ≰P y and x ≯P y;
✎ x ⫯P ∶= {v ∈ nodesP ∶ v <P x}, x ⫰P ∶= {v ∈ nodesP ∶ v >P x};
✎ x !P ∶= {v ∈ nodesP ∶ v ⩽P x}, x "P ∶= {v ∈ nodesP ∶ v ⩾P x};
✎ A$P ∶= ⋃{v!P ∶ v ∈ A}, A%P ∶= ⋃{v"P ∶ v ∈ A};
✎ ( x, y)P ∶= x ⫰P ∩ y⫯P , [x, y]P ∶= x "P ∩ y!P ;
✎ [x, y)P ∶= x "P ∩ y⫯P , ( x, y]P ∶= x ⫰P ∩ y!P ;
✎ x ⊏P y ∶←→ x <P y and ( x, y)P = ∅;
✎ sonsP( x ) ∶= { s ∈ nodesP ∶ x ⊏P s };
✎ A is P-cofinal in B ∶←→ A ⊆ B and B ⊆ A$P ;
✎ A is an antichain in P ∶←→ ∀v ≠ w ∈ A [ v ∥P w ];
✎ A is a chain in P ∶←→ ∀v, w ∈ A [ v ⩽P w or v >P w ];
✎ P has bounded chains ∶←→ for each nonempty chain C in P there is z ∈ nodesP such that C ⊆ z!P ;
✎ maxP ∶= { m ∈ nodesP ∶ m ⫰P = ∅ }, minP ∶= { m ∈ nodesP ∶ m ⫯P = ∅ };
✎ for P with the least node,

0P ∶= the least node of P .

When a partially ordered set is a (set-theoretic) tree [4,3], we use the following terminology:

Notation 4. Suppose that T is a tree; that is, T is a strict partially ordered set such that for each x ∈ nodesT , 
the set x ⫯T is well-ordered by < T . Let x ∈ nodesT , let α be an ordinal, and let κ be a cardinal. Then:

✎ heightT ( x ) ∶= the ordinal isomorphic to (x ⫯T , < T );
✎ levelT ( α) ∶= {v ∈ nodesT ∶ heightT ( v) = α};
✎ heightT ∶= the minimal ordinal β such that levelT (β) = ∅;
✎ B is a branch in T ∶←→ B is a ⊆-maximal chain in T ;
✎ branchesT ∶= {B ⊆ nodesT ∶ B is a branch in T };
✎ if A ⊆ nodesT is an antichain in T and x ∈ A%T , then

rootT (x, A) ∶= the r in A such that x ∈ r"T ;
✎ T is κ-branching ∶←→ ∀v ∈ nodesT ∖ maxT [ ∣ sonsT (v) ∣ = κ ];
✎ T is an α, κ -tree ∶←→ T is isomorphic to the tree (<ακ, ⊂).

The following example illustrates the usage of the above terminology:

Example 5. Let T = (<ωA, ⊂), where A is nonempty. Then T is an ∣A∣-branching tree with the least node, 
nodesT = <ωA, 0T = ⟨⟩, and maxT = ∅. Suppose that a, b, c, d ∈ A are different. Then we have:

⟨c, a, b, a⟩⫯T = {⟨⟩, ⟨c⟩, ⟨c, a⟩, ⟨c, a, b⟩}, heightT (⟨c, a, b, a⟩) = 4, heightT (⟨⟩) = 0,

levelT (2) = {⟨x, y⟩ ∶ x, y ∈ A}, levelT (0) = {⟨⟩}, levelT (ω) = ∅, heightT = ω,

sonsT (⟨c, a⟩) = {⟨c, a, x⟩ ∶ x ∈ A}, rootT (⟨c, b, a, d⟩,{⟨a⟩, ⟨c, b⟩, ⟨d⟩}) = ⟨c, b⟩.
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Also we list here several simple facts about trees, which we use in this paper:

Lemma 6. Suppose that T is a tree. Then:

(a) maxT = {v ∈ nodesT ∶ sonsT (v) = ∅}.
(b) If x, y, z ∈ nodesT , x ⩾T y, and y ∥T z, then x ∥T z.
(c) If C is a chain in T , then there is B ∈ branchesT such that C ⊆ B.
(d) If B ∈ branchesT and x ∈ (nodesT ) ∖B, then there is b ∈B such that x ∥T b.
(e) If B ∈ branchesT and b ∈B ∖maxT , then B ∩ sonsT (b) ≠ ∅.
(f) If B ∈ branchesT and b ∈B, then b !T ⊆ B.
(g) If m ∈ maxT , then m!T is a branch in T .
(h) If T has bounded chains, then branchesT = {m!T ∶ m ∈ maxT }.
(i) The following are equivalent:

➢ T is an ω, ℵ0-tree.
➢ T has the least node, T is ℵ0-branching, maxT = ∅, and heightT ⩽ ω. ◻

3. Foliage trees

Informally, a foliage tree is a tree with a leaf at each node, where by a leaf we mean an arbitrary set. 
Here is the formal definition:

Definition 7. A foliage tree is a pair F = (T , l) such that T is a (set-theoretic) tree and l is a function with 
domain l = nodesT . For each x ∈ nodesT , the l( x ) is called the leaf of F at node x and is denoted by Fx. The 
tree T is called the skeleton of F and is denoted by skeletonF.

Convention 8. Let F be a foliage tree and let O be an operation or a notion that is defined on trees. Then 
we use O(F) as the abbreviation for O( skeletonF). For example,

✎ nodesF ∶= nodes( skeletonF),
✎ 0F ∶= 0skeletonF,
✎ F has bounded chains ∶←→ skeletonF has bounded chains,
✎ x ⊏F y ∶←→ x ⊏skeletonF y.

Notation 9. Let F be a foliage tree, let ∅ ≠ A ⊆ nodesF, and let z ∈ nodesF. Then:

✎ fruitF( A ) ∶= ⋂{Fx ∶ x ∈ A};
✎ yieldF ∶= ⋃{fruitF( B) ∶ B ∈ branchesF};
✎ fleshF ∶= ⋃{Fx ∶ x ∈ nodesF};
✎ fleshF( A ) ∶= ⋃{Fx ∶ x ∈ A};
✎ shootF( z) ∶= { fleshF( C) ∶ C is a cofinite subset of sonsF( z) };
✎ scopeF(p) ∶= { y ∈ nodesF ∶ Fy ∋p };
✎ for a space X and a point p in X,

nbhds(p, X) ∶= the family of (not necessarily open) neighbourhoods of p in X;
✎ for arbitrary sets γ and δ,

γ ≫ δ ∶←→ γ π-refines δ ∶←→ ∀ D ∈ δ∖{∅} ∃G ∈ γ∖{∅} [ G ⊆ D ].

Definition 10. Let F be a foliage tree, X a space, α an ordinal, and κ a cardinal. Then:

✎ F has nonempty leaves ∶←→ ∀x ∈ nodesF [ Fx ≠ ∅ ];
✎ F is nonincreasing ∶←→ ∀x, y ∈ nodesF [ y ⩾F x → Fy ⊆ Fx ];
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✎ F is splittable ∶←→ ∀x, y ∈ nodesF [ x ∥F y → Fx ∩Fy = ∅ ];
✎ F is complete ∶←→ nodesF ≠ ∅ and ∀B ∈ branchesF [ fruitF( B) ≠ ∅ ];
✎ F has strict branches ∶←→ nodesF ≠ ∅ and ∀B ∈ branchesF [ fruitF( B) is a singleton];
✎ F is locally strict ∶←→ ∀x ∈ nodesF ∖maxF [ Fx ≡ ⊔s∈sonsF(x)Fs ];
✎ F is open in X ∶←→ ∀z ∈ nodesF [ Fz is an open subset of X ];
✎ F is a foliage α, κ -tree ∶←→ skeletonF is an α, κ -tree (see Notation 4);
✎ F is a Baire foliage tree on X ∶←→ F is an open in X locally strict foliage ω, ℵ0 -tree with strict 

branches and such that F0F = X;
✎ F grows into X ∶←→ ∀p ∈ X ∀U∈ nbhds(p, X) ∃z ∈ scopeF(p) [ shootF( z) ≫ {U} ];
✎ F is a π-tree on X ∶←→ F is a Baire foliage tree on X and F grows into X.

Note that leaves of a π-tree on X are closed-and-open in X and that the set of these leaves forms a countable 
π-base and pseudo-base for X.

The notion of a π-tree is equivalent to the notion of a Lusin π-base, which was introduced in [1]; the 
only difference is that a Lusin π-base is a family indexed by nodes of the tree (<ωω, ⊂), while a π-tree is a 
foliage tree whose skeleton is isomorphic to (<ωω, ⊂). From a topological point of view, there is no difference 
between these two notions because of the following remark:

Remark 11. For any space X, the following are equivalent:

➢ X has a π-tree.
➢ X has a Lusin π-base. ◻

Recall that the Baire space N is the set ωω endowed with the Tychonov product topology, where ω
carries the discrete topology. The Baire space has a basis {{p ∈ ωω ∶ x ⊆ p} ∶ x ∈ <ωω}, which is called [2] the 
standard basis for ωω. This standard basis can be viewed as a foliage tree:

Notation 12. We denote by S the foliage tree such that

➢ skeletonS ∶= (<ωω, ⊂) and
➢ Sx ∶= {p ∈ ωω ∶ x ⊆ p} for all x ∈ <ωω.

We call this foliage tree the standard foliage tree of ωω.

Lemma 13.

(a) S is a π-tree on the Baire space N = (ωω, τN).
(b) S is a Baire foliage tree on a space (ωω, τ) iff τ ⊇ τN .
(c) A space X has a Baire foliage tree iff

X is homeomorphic to some space (ωω, τ) such that τ ⊇ τN .
(d) A space X has a π-tree iff

X is homeomorphic to some space (ωω, τ) such that S is a π-tree on (ωω, τ).

Proof. Part (a) and the → direction of (b) follow from the fact that {Sx ∶ x ∈ <ωω} is a basis for the Baire 
space. The ← direction of (b) follows from (a). The → direction of (c) is a reformulation of Lemma 3.3 
from [1] and the ← direction of (c) follows from (b). The → direction of (d) is a reformulation of Lemma 3.9 
from [1], the opposite direction of (d) is trivial. ◻
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Lemma 14. Suppose that F is a foliage tree. Then:

(a) If F is nonincreasing, ∅ ≠ A ⊆ B ⊆ nodesF, and A is F-cofinal in B, then fruitF( A ) = fruitF( B).
(b) If F has the least node and heightF ⩽ ω, then the following are equivalent:

➢ F is locally strict;
➢ F is splittable and fleshF = yieldF. ◻

4. Hybrid operation

In this paper we build a π-tree for a subspace Y of a space X that already has a π-tree by using the 
foliage hybrid operation (see Definition 27 in Section 5). The foliage hybrid operation deals with foliage trees 
and we construct it by using another operation — the hybrid operation — which deals with trees. These 
two operations are quite complicated, you can look at pictures that illustrate all definitions in [6].

In this section we build the hybrid operation (see Definition 19), prove that the result of the hybrid 
operation is always a tree (see Proposition 22), and establish properties of this operation (see Proposition 23).

The hybrid operation modifies a given tree T in two steps: first we cut out several pieces from T , after 
that we engraft special trees onto the places of cut out pieces. The special trees that are engrafted onto 
T are called grafts, the cut out pieces are called explants, and the parts of grafts that replace explants are 
called implants:

Definition 15. Let T be a tree. Then a graft for T is a tree G such that:

(a) ∣ nodesG ∣ > 1;
(b) G has the least node;
(c) 0G ∈ nodesT and maxG ⊆ nodesT ;
(d) maxG ⊆ ( 0G) ⫰T ;
(e) maxG is an antichain in T ;
(f) implantG ∩ nodesT = ∅,

where the set

implantG ∶= nodesG ∖ ({0G} ∪ maxG)

is called the implant of G. The set

explant(T ,G) ∶= (0G)⫰T ∖ (maxG)%T

is called the explant of T and G.

Note that maxG may be empty and then ( maxG)%T = ∅%T = ∅. The following example is given to clarify 
Definition 15.

Example 16. Suppose that T = (<ωA, ⊂) is a tree from Example 5 and a, b, c, d ∈ A are different. Then 
{⟨a, d⟩, ⟨a, b, c⟩} ⊆ ⟨ a ⟩ ⫰T and {⟨a, d⟩, ⟨a, b, c⟩} is an antichain in T . Let IMP be a set disjoint from nodesT and 
let G be a tree such that

➢ nodesG = {⟨ a ⟩, ⟨a, d⟩, ⟨a, b, c⟩} ∪ IMP,
➢ 0G = ⟨ a ⟩, and
➢ maxG = {⟨a, d⟩, ⟨a, b, c⟩}.
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Then G is a graft for T , implantG = IMP, and

explant(T ,G) = { s ∈ <ωA ∶ ⟨a⟩ ⊂ s} ∖ { s ∈ <ωA ∶ ⟨a, d⟩ ⊆ s or ⟨a, b, c⟩ ⊆ s}.

We want to engraft onto T many grafts at once, so we need to find conditions which guarantee that 
different grafts do not conflict with each other (for example, nodes of one graft should not lie in the explant 
of another graft).

Definition 17. Let T be a tree. Then γ is a consistent family of grafts for T iff

(a) ∀G ∈ γ [ G is a graft for T ];
(b) ∀D ≠ E ∈ γ [ implantD ∩ implantE = ∅ ];
(c) ∀D ≠ E ∈ γ

➢ 0D ∥T 0E or
➢ 0D ∈ ( maxE)%T or
➢ 0E ∈ ( maxD)%T .

The set

support(T , γ) ∶= nodesT ∖ ⋃
G∈γ

explant(T ,G)

is called the support of T for γ.

Lemma 18. Suppose that γ is a consistent family of grafts for a tree T and G ∈ γ. Then:

(a) nodesG ≡ { 0G} ⊔ maxG ⊔ implantG;
(b) { 0G} ∪ maxG ∪ minT ⊆ support(T , γ);
(c) implantG ∩ support(T , γ) = ∅;
(d) ∀s ∈ support(T , γ) [ s >T 0G ←→ s ∈ ( maxG)%T ];
(e) ∀s ∈ support(T , γ) ∀e ∈ explant(T , G) [ s ⩽T 0G ←→ s <T e ];
(f) ∀D ≠ E ∈ γ [ 0D ≠ 0E and maxD ∩ maxE = ∅ ]. ◻

Now we can give a definition of the hybrid operation:

Definition 19. Let γ be a consistent family of grafts for a tree T . Then the hybrid of T and γ — in symbols, 
hybrid(T , γ) — is a pair (H, <) such that:

(a) H ∶= support(T , γ) ∪ ⋃
G∈γ

implantG

(note that all these sets are pairwise disjoint by (b) of Definition 17 and (c) of Lemma 18);
(b) < is a relation on H defined by:

x < y ∶←→
(b1) x, y ∈ support(T , γ) and x <T y

or
(b2) ∃ G ∈γ such that

➢ x, y ∈ implantG and
➢ x <G y

or
(b3) ∃ G ∈γ such that
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➢ x ∈ support(T , γ) and
➢ y ∈ implantG and
➢ x ⩽T 0G
or

(b4) ∃ G ∈γ such that
➢ x ∈ implantG and
➢ y ∈ support(T , γ) and
➢ y ∈ ( maxG)%T and
➢ x <G rootT (y, maxG)
or

(b5) ∃ D≠E ∈ γ such that
➢ x ∈ implantD and
➢ y ∈ implantE and
➢ 0E ∈ ( maxD)%T and
➢ x <D rootT (0E , maxD).

We could give a shorter (but less suitable for our aims) definition for the hybrid operation in the following 
equivalent way:

Remark 20. Clause (b) of Definition 19 is equivalent to the assertion that < is the transitive closure of 
relation

(<T ∪ ⋃
G∈γ

<G ) ∩ (H ×H).

Proof. Let ⊲ ∶= (<T ∪ ⋃G∈γ <G) ∩ (H ×H). We have ⊲ ⊆ < by (a)–(b) of Lemma 21 and < is transitive by 
Proposition 22 (we do not use Remark 20 in the proofs of Lemma 21 and Proposition 22).

It remains to show that if ⊲ ⊆ ⋖ and ⋖ is a transitive relation on H, then < ⊆ ⋖. Suppose ( x, y) ∈ <;
this means that one of conditions (b1)–(b5) of Definition 19 holds. For example, if (b3) holds, then x ∈
support(T , γ), y ∈ implantG, x ⩽T 0G , and 0G <G y, so x ⊴ 0G ⊲ y. Then x 7 0G ⋖ y, whence ( x, y) ∈ ⋖ by 
transitivity. The other cases are similar. ◻

Lemma 21. Suppose that γ is a consistent family of grafts for a tree T , H = hybrid(T , γ), and G ∈ γ. Then:

(a) nodesG ⊆ nodesH and
∀x, y ∈ nodesG [ x <H y ↔ x <G y ];

(b) support(T , γ) = nodesH∩ nodesT and
∀x, y ∈ support(T , γ) [ x <H y ↔ x <T y ];

(c) ∀h ∈ nodesH ∀i ∈ implantG [ h ⩾H i → h >H 0G ];
(d) ∀h ∈ nodesH ∀i ∈ implantG [ h ⩽H 0G → h <H i ];
(e) ∀h ∈ nodesH∖ implantG ∀i ∈ implantG [ h ⩽H 0G ↔ h <H i ];
(f) ∀h ∈ nodesH∖ implantG [h >H 0G ↔ h ∈ ( maxG)%H ];
(g) ∀g ∈ nodesG [ g⫯H ≡ g⫯G ⊔ ( 0G) ⫯H ].

Proof. (a)–(e) are straightforward; (f) follows from (b) of Lemma 21, (d) and (f) of Lemma 18, and (e) 
of Definition 15; (g) can be proved by using (a)–(f) of Lemma 21, (d) and (f) of Lemma 18, and (e) of 
Definition 15. ◻

First we show that a result of the hybrid operation is always a tree:
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Proposition 22. Suppose that γ is a consistent family of grafts for a tree T . Then hybrid(T , γ) is a tree.

Proof. Let H ∶= hybrid(T , γ). The irreflexivity of <H is trivial, let us prove that x <H y <H z implies x <H z. 
We consider several cases:

(i) z ∈ support(T , γ).
(i.1) y ∈ support(T , γ).

The case x ∈ support(T , γ) is trivial. If there is D ∈ γ such that x ∈ implantD, then x <D
rootT (y, maxD). Since y <T z, we have rootT (z, maxD) = rootT (y, maxD), so x <H z.

(i.2) ∃ E ∈γ [ y ∈ implantE ].
The case x ∈ implantE is trivial. If x ∉ implantE , then x ⩽H0E by (e) of Lemma 21 and 0E <H z by 
(c) of Lemma 21. Therefore x ⩽H0E <H z and we may use (i.1), since 0E ∈ support(T , γ).

(ii) ∃ G ∈γ [ z ∈ implantG ].
(ii.1) y ∈ implantG.

The case x ∈ implantG is trivial. If x ∉ implantG, then using (e) of Lemma 21 twice, we get x <H z.
(ii.2) y ∉ implantG.

By (e) of Lemma 21, x <H y ⩽H0G . Since 0G ∈ support(T , γ), we have x <H0G by (i), so x <H z by 
(d) of Lemma 21.

Now we prove that for each z ∈ nodesH, the set z⫯H is a chain in H. We must show that x, y ∈ z⫯H implies 
x ⩽H y or x >H y. Again, we consider several cases:

(i) z ∈ support(T , γ).
(i.1) y ∈ support(T , γ).

(i.1.1) x ∈ support(T , γ).
This case is trivial.

(i.1.2) ∃ E ∈γ [ x ∈ implantD ].
By (c) of Lemma 21, 0D ∈ z⫯H, so 0D ∈ support(T , γ) implies y ⩽H 0D or y >H0D by (i.1.1). 
If y ⩽H 0D, then y <H x by (d) of Lemma 21. If y >H 0D, then y ∈ ( maxD)%T by (d) 
of Lemma 18. Then rootT (y, maxD) = rootT (z, maxD), so x <D rootT (y, maxD), whence 
x <H y.

(i.2) ∃ E ∈γ [ y ∈ implantE ].
(i.2.1) x ∈ support(T , γ).

This case is the same as (i.1.2).
(i.2.2) ∃ E ∈γ [ x ∈ implantD ].

The case D = E is trivial. If D ≠ E , then by (c) of Lemma 21, 0D, 0E ∈ z⫯H, so 
0D ⩽H 0E or 0D >H 0E by (i.1.1). By (f) of Lemma 18, 0D ≠ 0E , so by (d) of Lemma 18
we may assume without loss of generality that 0E ∈ ( maxD)%T . Since 0E <T z, we have 
rootT (0E , maxD) = rootT (z, maxD), so x <H 0E , whence x <H y by transitivity.

(ii) ∃ G ∈γ [ z ∈ implantG ].
(ii.1) y ∈ implantG or x ∈ implantG.

This case is similar to case (ii.1) from the proof of transitivity.
(ii.2) x, y ∉ implantG.

By (e) of Lemma 21, x, y ∈ ( 0G)!H. Then either {x, y} ∩ { 0G} ≠ ∅ or x, y ∈ ( 0G)⫯H and the proof 
from (i) for z ∶= 0G works.

It remains to prove that for each z ∈ nodesH and each nonempty A ⊆ z⫯H, there is a <H-minimal node 
in A. We consider several cases:
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(i) z ∈ support(T , γ).
Consider a nonempty set

B ∶= (A ∩ support(T , γ)) ∪ {0G ∶ G ∈ γ and A ∩ implantG ≠ ∅}.

We have B ⊆ support(T , γ), so it follows by (c) of Lemma 21 that B ⊆ z!T . Then there is a <T -minimal 
node m in B. Note that m ∈ support(T , γ).
(i.1) m ∈ A.

Let us show that m is a <H-minimal node of A. Suppose x ∈ A and x ⩽H m.
(i.1.1) x ∈ support(T , γ).

In this case x ∈ B and x ⩽T m, so x = m.
(i.1.2) ∃ E ∈γ [ x ∈ implantD ].

By (c) of Lemma 21, 0D <T m. But 0D ∈ B, since x ∈ A ∩ implantD. This contradicts the 
<T -minimality of m in B.

(i.2) m ∉ A.
In this case m = 0G for some G ∈ γ such that A ∩ implantG ≠ ∅. Since A is a chain in H, it follows 
that A ∩ implantG is a chain in G. Then it is not hard to prove that there is a <G-minimal node l
in A ∩ implantG. Let us show that l is a <H-minimal node of A. Suppose x ∈ A and x ⩽H l.
(i.2.1) x ∈ support(T , γ).

Then x <H l (since l ∈ implantG /∋ x), so by (e) of Lemma 21, x ⩽T 0G = m. Since x ∈ A /∋ m, 
we have x <T m and x ∈ B. This contradicts the <T -minimality of m in B.

(i.2.2) ∃ E ∈γ [ x ∈ implantD ].
We have 0D, 0G ∈ B and 0D ⩽H 0G by (c) and (e) of Lemma 21. Then 0D = 0G by the 
<T -minimality of 0G = m in B, so D = G by (f) of Lemma 18. This implies x ∈ A ∩ implantG
and x ⩽G l, so x = l by the <G-minimality of l in A ∩ implantG.

(ii) ∃ G ∈γ [ z ∈ implantG ].
By (g) of Lemma 21,

A ⊆ z⫯G ∪ (0G)⫯H.

If A ∩( 0G) ⫯H ≠ ∅, then a <H-minimal node of A ∩( 0G) ⫯H, which exists by (i), is a <H-minimal node of A. 
Otherwise, A ⊆ z⫯G , and then a <G-minimal node of A is a <H-minimal node of A. ◻

Now we establish several properties of the hybrid operation:

Proposition 23. Suppose that γ is a consistent family of grafts for a tree T and H = hybrid(T , γ).
Then:

(a) For each x ∈ nodesH,

sonsH( x ) =
⎧⎪⎪⎨⎪⎪⎩

sonsG(x), if x ∈ {0G} ∪ implantG for some G ∈ γ;
sonsT (x), otherwise (i.e., when x ∈ support(T , γ) ∖ {0G ∶ G ∈ γ}).

(b) If x, y ∈ nodesH and x ∥H y, then there are x′ ∈ x !H and y′ ∈ y!H such that
(b1) [x′, y′ ∈ support(T , γ) and x′ ∥T y′ ] or
(b2) ∃ G ∈γ [x′, y′ ∈ nodesG and x′ ∥G y′ ].

(c) If T has the least node, then H has the least node, 0H = 0T, and 0H ∈ support(T , γ).
(d) If maxT = ∅, then maxH = ∅.
(e) If T is κ-branching and ∀G ∈ γ [ G is κ-branching ], then H is κ-branching.
(f) If heightT ⩽ ω and ∀G ∈ γ [ heightG ⩽ ω ], then heightH ⩽ ω.
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Proof. (a) Suppose x ∈ nodesH. We consider two cases:

Case 1. ∃ G ∈γ [x ∈ { 0G} ∪ implantG ].

First we prove sonsH( x ) ⊇ sonsG( x ). If not, then there is s ∈ sonsG( x ) ∖ sonsH( x ). Then x <H s by (a) of 
Lemma 21, so s ∉ sonsH( x ) implies there is v ∈ (x, s)H. We have v ∉ ( 0G) ⫯H, so v ∈ s⫯G ⊆ nodesG by (g) of 
Lemma 21, whence v ∈ (x, s)G . This contradicts s ∈ sonsG( x ).

Now we prove sonsH( x ) ⊆ sonsG( x ). If not, then there is s ∈ sonsH( x ) ∖ sonsG( x ). We consider several 
subcases:

(i) x ∈ implantG.
(i.1) s ∈ nodesG.

Then x <G s, so (x, s)G ≠ ∅, whence (x, s)H ≠ ∅ by (a) of Lemma 21. This contradicts s ∈ sonsH( x ).
(i.2) s ∉ nodesG.

Then x <H s implies x <H r <H s for some r ∈ maxG. This contradicts s ∈ sonsH( x ).
(ii) x = 0G .

(ii.1) s ∈ implantG.
This case is similar to (i.1).

(ii.2) s ∉ implantG.
Then s ∈ sonsH( 0G) with (f) of Lemma 21 implies s ∈ maxG, so (0G , s)H = ∅ implies (0G , s)G = ∅. 
This contradicts s ∉ sonsG( 0G).

Case 2. x ∈ support(T , γ) ∖ {0G ∶ G ∈ γ}.

First we prove sonsH( x ) ⊆ sonsT ( x ). If not, then there is s ∈ sonsH( x ) ∖ sonsT ( x ). We consider two 
subcases:

(i) s ∉ support(T , γ).
Then there is E ∈ γ such that s ∈ implantE . Then x ⩽H 0E <H s by (e) of Lemma 21, so x <H 0E <H s by 
Case 2. This contradicts s ∈ sonsH( x ).

(ii) s ∈ support(T , γ).
Then x < T s, so s ∉ sonsT ( x ) implies there is v ∈ (x, s)T . Since (x, s)H = ∅, we have v ∉ support(T , γ), so 
there is E ∈ γ such that v ∈ explant(T , E). Then x ⩽T 0E <T v <T s by (e) of Lemma 18, so x ⩽H0E <H s, 
whence x <H0E <H s by Case 2. This contradicts s ∈ sonsH( x ).

Now we prove sonsH( x ) ⊇ sonsT ( x ). If not, then there is s ∈ sonsT ( x ) ∖ sonsH( x ). Again, there are two 
subcases:

(i) s ∉ support(T , γ).
Then there is E ∈ γ such that s ∈ explant(T ,E). Then x ⩽T 0E <T s by (e) of Lemma 18, so x <T 0E <T s

by Case 2. This contradicts s ∈ sonsT ( x ).
(ii) s ∈ support(T , γ).

Then x <H s, so s ∉ sonsH( x ) implies there is v ∈ (x, s)H. Since (x, s)T = ∅, we have v ∉ support(T , γ), 
so there is E ∈ γ such that v ∈ implantE . Then x ⩽H 0E <H v <H s by (e) of Lemma 21, so x ⩽T 0E <T s, 
whence x <T 0E <T s by Case 2. This contradicts s ∈ sonsT ( x ).

(b) Suppose x, y ∈ nodesH and x ∥H y. We consider several cases:

(i) x, y ∈ support(T , γ).
Then by (b) of Lemma 21, x′ ∶= x and y′ ∶= y satisfy (b1) of Proposition 23.
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(ii) ∣ {x, y} ∩ support(T , γ) ∣ = 1.
We may assume without loss of generality that x ∈ support(T , γ) and y ∉ support(T , γ). Then there is 
G ∈ γ such that y ∈ implantG.
(ii.1) x ∥H 0G .

Then x′ ∶= x and y′ ∶= 0G satisfy (b1) of Proposition 23.
(ii.2) x ⩽H 0G .

Then x ⩽H y, which contradicts x ∥H y.
(ii.3) x >H 0G .

Then by (f) of Lemma 21, x ∈ ( maxG)%H. Let r ∶= rootH(x, maxG). We have r ∥G y (else r ⩾G y, 
which contradicts x ∥H y), so x′ ∶= r and y′ ∶= y satisfy (b2) of Proposition 23.

(iii) x, y ∉ support(T , γ).
Then there are D, E ∈ γ such that x ∈ implantD and y ∈ implantE .
(iii.1) D = E .

Then by (a) of Lemma 21, x′ ∶= x and y′ ∶= y satisfy (b2) of Proposition 23.
(iii.2) D ≠ E and 0D ∥H 0E .

Then x′ ∶= 0D and y′ ∶= 0E satisfy (b1) of Proposition 23.
(iii.3) D ≠ E and 0D ∦H 0E .

Then by (c) of Definition 17 we may assume without loss of generality that 0E ∈ ( maxD)%T . We 
have x ∥H 0E — otherwise x ⩽H 0E , which contradicts x ∥H y, or x >H 0E , which contradicts 0E ∈
( maxD)%T . Let us consider x1 ∶= x and y1 ∶= 0E . Then x1 ∥H y1 and ∣{x1, y1} ∩ support(T , γ)∣ = 1, 
so by (ii) there are corresponding x′1 ∈ x1!H and y′1 ∈ y1!H. Then x′ ∶= x′1 ∈ x !H and y′ ∶= y′1 ∈ y!H
satisfy (b1) or (b2) of Proposition 23.

(c) Suppose T has the least node. Then 0T ∈ support(T , γ) by (b) of Lemma 18, therefore 0T is the least 
node of H by (b) and (d) of Lemma 21.

(d) Suppose maxT = ∅. Let x ∈ nodesH. If x ∈ support(T , γ) ∖ {0G ∶ G ∈ γ}, then sonsH( x ) ≠ ∅ by (a) 
of Proposition 23 and by (a) of Lemma 6, hence x ∉ maxH. If x ∈ { 0G} ∪ implantG for some G ∈ γ, then 
x ∉ maxG by (a) of Lemma 18, so x ∉ maxH by (a) of Lemma 21.

(e) Suppose T is κ-branching and for each G ∈ γ, the G is κ-branching. Then H is κ-branching by (a) of 
Proposition 23 and by (a) of Lemma 6.

(f) Suppose heightT ⩽ ω and for each G ∈ γ, we have heightG ⩽ ω. It is enough to prove that for each 
x ∈ nodesH, the x ⫯H is finite.

If x ∈ support(T , γ), then x ⫯H ∩ support(T , γ) ⊆ x ⫯T , so x ⫯H ∩ support(T , γ) is finite. Suppose G ∈ γ. If 
x ⫯H∩ implantG ≠ ∅, then 0G ∈ x ⫯H by (c) of Lemma 21, so 0G ∈ x ⫯T . Then x ∈ ( maxG)%T by (d) of Lemma 18, 
so x ⫯H ∩ implantG ⊆ (rootT (x, maxG))⫯G by (b4) of Definition 19. This means that x ⫯H ∩ implantG is finite, 
since v⫯G is finite for every v ∈ nodesG. So it is enough to show that the set {G ∈ γ ∶ 0G ∈ x ⫯T } is finite. Since 
x ⫯T is finite, the (f) of Lemma 18 implies that this is indeed the case.

If x ∈ implantG for some G ∈ γ, then x ⫯H = x ⫯G ∪ ( 0G) ⫯H by (g) of Lemma 21. Since 0G ∈ support(T , γ), the 
( 0G) ⫯H is finite by the above, therefore x ⫯H is finite. ◻

Finally we establish two properties of branches in hybrid(T , γ):

Lemma 24. Suppose that γ is a consistent family of grafts for a tree T and B is a branch in hybrid(T , γ). 
Then:

(a) If G ∈ γ and B ∩ nodesG ≠ ∅, then B ∩ nodesG is a branch in G.
(b) If every graft in γ has bounded chains, then B ∩ support(T , γ) is hybrid(T , γ)-cofinal in B.
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Proof. Let H ∶= hybrid(T , γ).
(a) Suppose that G ∈ γ, B is a branch in H, and x ∈ CG ∶= B∩ nodesG. We must prove that CG is a branch 

in G. We consider two cases:

Case 1. ∃y ∈B ∖ (( 0G) ⫯H∪ nodesG).

By (f) of Lemma 6, x !H ⊆ B, so 0G ∈ B. Then since B is a chain in H and y ∉ ( 0G) ⫯H∪{0G}, we have y >H 0G . 
Then y ∈ ( maxG)%H by (f) of Lemma 21. Let r ∶= rootH(y, maxG). We have y ∈ B, so by (f) of Lemma 6
y!H ⊆ B, hence r!H ⊆ B. Now r!G ⊆ nodesG and by (a) of Lemma 21, r!G ⊆ r!H, so r!G ⊆ B ∩ nodesG = CG . 
Further, r!G is branch in G by (g) of Lemma 6, r!G ⊆ CG , and CG is a chain in G, therefore CG is a branch 
in G.

Case 2. B ⊆ ( 0G) ⫯H∪ nodesG.

Since CG is a chain in G, then by (c) of Lemma 6 there is BG ∈ branchesG such that CG ⊆ BG . Now ( 0G) ⫯H
and BG are chains in H and BG ⊆ nodesG ⊆ ( 0G) "H, therefore ( 0G) ⫯H ∪BG is a chain in H. Furthermore, B is 
a branch in H, by Case 2

B ⊆ (0G)⫯H ∪ (B ∩ nodesG) = (0G)⫯H ∪CG ⊆ (0G)⫯H ∪BG ,

and ( 0G) ⫯H ∪BG is a chain in H, so

B = (0G)⫯H ∪CG = (0G)⫯H ∪BG .

Then CG = BG because ( 0G) ⫯H ∩CG = ∅ and ( 0G) ⫯H ∩BG = ∅, so CG is a branch in G.
(b) Suppose that every G ∈ γ has bounded chains and B ∈ branchesH. Let x ∈ B and C ∶= B∩support(T , γ). 

We must prove that x ∈ C $H. If x ∈ support(T , γ), then x ∈ C, so x ∈ C $H. If x ∉ support(T , γ), then there is 
G ∈ γ such that x ∈ implantG. We have B∩nodesG ≠ ∅, so by (a), BG ∶= B∩nodesG is a branch in G. Now, by 
(h) of Lemma 6, there is m ∈ maxG such that BG = m!G . Then x ∈ BG = m!G ⊆ m!H and m ∈ support(T , γ), 
whence m ∈ C, so x ∈ C $H. ◻

5. Foliage hybrid operation

In this section we construct the foliage hybrid operation and establish its properties — see Definition 27
and Proposition 29. The foliage hybrid operation modifies a given foliage tree F with the help of a family ϕ of 
special foliage trees, which we call foliage grafts. This operation deals with nonincreasing foliage trees and it 
acts as follows. At first, applying the hybrid operation (see Section 4) to skeletonF and {skeletonG ∶ G ∈ ϕ}, 
we obtain a tree. After that we define leaves at nodes of this tree by using leaves of F and leaves of foliage 
grafts G, G ∈ ϕ.

Definition 25. Let F be a nonincreasing foliage tree. Then a foliage graft for F is a foliage tree G such that:

(a) G is nonincreasing;
(b) skeletonG is a graft for skeletonF

(hence 0G ∈ nodesF and maxG ⊆ nodesF);
(c) G0G ⊆ F0G ;
(d) ∀m ∈maxG [Gm= Fm].
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The set

cut(F,G) ∶= F0G∖G0G

is called the cut from F by G.

Definition 26. Let F be a nonincreasing foliage tree. Then ϕ is a consistent family of foliage grafts for F iff

(a) ∀G ∈ ϕ [ G is a foliage graft for F ];
(b) ∀D ≠ E ∈ ϕ [ skeletonD ≠ skeletonE ];
(c) {skeletonG ∶G ∈ ϕ} is a consistent family of grafts for skeletonF.

The set

loss(F, ϕ) ∶= ⋃
G∈ϕ

cut(F,G)

is called the loss of F on ϕ.

Now we define the foliage hybrid operation:

Definition 27. Let ϕ be a consistent family of foliage grafts for a nonincreasing foliage tree F. Then the
foliage hybrid of F and ϕ — in symbols, fol.hybr(F, ϕ) — is a foliage tree H such that:

(a) skeletonH ∶= hybrid(skeletonF, {skeletonG ∶ G ∈ ϕ} );

(b) Hx ∶=
⎧⎪⎪⎨⎪⎪⎩

Gx∖ loss(F, ϕ), if x ∈ implantG for some G ∈ ϕ;
Fx∖ loss(F, ϕ), otherwise (i.e., when x ∈ support(F, ϕ)),

where

support(F, ϕ) ∶= support(skeletonF,{skeletonG ∶G ∈ ϕ}).

Note that the hybrid of skeletonF and {skeletonG ∶G ∈ ϕ} is a tree by Proposition 22, so a foliage hybrid 
is indeed a foliage tree.

Lemma 28. Suppose that ϕ is a consistent family of foliage grafts for a nonincreasing foliage tree F and 
H = fol.hybr(F, ϕ). Then:

(a) ∀G ∈ ϕ ∀x ∈ nodesG [Hx = Gx ∖ loss(F, ϕ) ].
(b) For any set A : if ∀G ∈ ϕ [A ⊆ G0G or A ∩F0G = ∅ ], then A ∩ loss(F, ϕ) = ∅. ◻

Now we establish several properties of the foliage hybrid operation:

Proposition 29. Suppose that ϕ is a consistent family of foliage grafts for a nonincreasing foliage tree F and 
H = fol.hybr(F, ϕ). Then:

(a) H is nonincreasing.
(b) If F and each G ∈ ϕ are splittable, then H is splittable.
(c) If F and each G ∈ ϕ are locally strict, then H is locally strict.
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(d) If F is complete (has strict branches) and splittable, and each G ∈ ϕ has bounded chains, then H is 
complete (has strict branches).

(e) If F and each G ∈ ϕ are open in a space X, then H is open in the subspace X ∖ loss(F, ϕ) of X.

Proof. (a) We must prove that the foliage tree H is nonincreasing. Suppose x, y ∈ nodesH and x <H y. Then 
one of conditions (b1)–(b5) of Definition 19 holds. For example, if (b4) holds, then there is G ∈ ϕ such that

x ∈ implantG, y ∈ support(F, ϕ), and x <G r ∶= rootF(y,maxG) ⩽F y.

Then Gx ⊇ Gr and Fr ⊇ Fy because G and F are nonincreasing by Definition 25. Then Hx ⊇ Hr by (a) of 
Lemma 28 and Hr ⊇ Hy by (b) of Definition 27, so Hx ⊇ Hy. The other cases are similar.

(b) Suppose F and each G ∈ ϕ are splittable; we must prove that H is also splittable. By (a), H is 
nonincreasing. Let x, y ∈ nodesH and x ∥H y. Then by (b) of Proposition 23, there are x′ ∈ x !H and y′ ∈ y!H
such that

either x′, y′ ∈ support(F, ϕ) and x′ ∥F y′ (1)

or ∃G ∈ ϕ [x′, y′ ∈ nodesG and x′ ∥G y′ ]. (2)

If (1) holds, then Hx ⊆ Hx′ ⊆ Fx′ and Hy ⊆ Hy′ ⊆ Fy′ since H is nonincreasing and by (b) of Definition 27, 
and Fx′∩Fy′ = ∅ because F is splittable, so Hx ∩ Hy = ∅. If (2) holds, then Hx′ ⊆ Gx′ and Hy′ ⊆ Gy′ by (a) 
of Lemma 28, and Gx′∩Gy′ = ∅ since G is splittable, so Hx ∩Hy = ∅ again.

(c) Suppose that F and each G ∈ ϕ are locally strict; we must prove that H is also locally strict. Let 
x ∈ nodesH ∖ maxH. Then sonsH( x ) ≠ ∅ by (a) of Lemma 6. We consider two cases:

Case 1. ∃G ∈ ϕ [x ∈ {0G} ∪ implantG ].

By (a) of Proposition 23 we have sonsG( x ) = sonsH( x ) ≠ ∅, so x ∈ nodesG ∖ maxG. Then

Gx ≡ ⊔
s∈sonsG(x)

Gs

since G is locally strict, hence

Gx ∖ loss(F, ϕ) ≡ ⊔
s∈sonsH(x)

(Gs∖ loss(F, ϕ)).

Since x ∈ nodesG and sonsH( x ) = sonsG( x ) ⊆ nodesG, then by (a) of Lemma 28 we have

Hx ≡ ⊔
s∈sonsH(x)

Hs .

Case 2. x ∈ support(F, ϕ) ∖ {0G ∶ G ∈ ϕ}.

By (a) of Proposition 23 we have sonsF( x ) = sonsH( x ) ≠ ∅, so x ∈ nodesF ∖ maxF. Then

Fx ≡ ⊔
s∈sonsF(x)

Fs

since F is locally strict, whence

Fx ∖ loss(F, ϕ) ≡ ⊔ (Fs∖ loss(F, ϕ)).

s∈sonsH(x)



M. Patrakeev / Topology and its Applications 221 (2017) 326–351 341
Since sonsH( x ) = sonsF( x ) ⊆ nodesF and sonsH( x ) ⊆ nodesH, we have

sonsH(x) ⊆ nodesF ∩ nodesH = support(F, ϕ)

by (b) of Lemma 21. Also we have x ∈ support(F, ϕ), so by (b) of Definition 27 we get

Hx ≡ ⊔
s∈sonsH(x)

Hs.

(d) First, suppose that F is complete and splittable, and each G ∈ ϕ has bounded chains. We must 
prove that H is complete. Since F is complete, we have nodesF ≠ ∅, so nodesH ≠ ∅ because either ϕ = ∅
and nodesH = nodesF or 0G ∈ nodesH for some G ∈ ϕ. Suppose that BH ∈ branchesH and C ∶= BH ∩
support(F, ϕ). Then it follows by (b) of Lemma 24 that C is H-cofinal in BH, and then C ≠ ∅ since BH ≠ ∅. 
By (a), H is nonincreasing, so by (a) of Lemma 14 we have

fruitH(BH) = fruitH(C). (3)

Since C ⊆ support(F, ϕ), then by (b) of Definition 27 we get

fruitH(C) = ⋂
x∈C

(Fx∖ loss(F, ϕ)) = fruitF(C) ∖ loss(F, ϕ). (4)

Further, since C is a chain in H and C ⊆ support(F, ϕ), we see by (b) of Lemma 21 that C is a chain in F. 
Then by (c) of Lemma 6 there is BF ∈ branchesF such that C ⊆ BF, so we have

fruitF(C) ⊇ fruitF(BF) ≠ ∅

because F is complete. It follows that

fruitH(BH) ⊇ fruitF(BF)∖ loss(F, ϕ) and fruitF(BF) ≠ ∅,

so it is enough to prove

fruitF(BF) ∩ loss(F, ϕ) = ∅.

Then, by (b) of Lemma 28, it is enough to show that for each G ∈ ϕ,

either fruitF(BF) ⊆ G0G or fruitF(BF) ∩F0G = ∅. (5)

To show it we consider two cases:

Case 1. 0G ∈ BF.

First let us prove that 0G ∈ BH. If not, then by (d) of Lemma 6 there is b ∈ BH such that b ∥H 0G. Since 
C is H-cofinal in BH, there is c ∈ C such that c ⩾H b, so c ∥H 0G by (b) of Lemma 6. Both c and 0G lie in 
support(F, ϕ), so we have c ∥F 0G, but this contradicts c ∈ C ⊆ BF ∋0G.

Now 0G ∈ BH. Then by (a) of Lemma 24, BH∩nodesG ∈ branchesG, so by (h) of Lemma 6, BH∩nodesG =
m!G for some m ∈ maxG. Since maxG ⊆ support(F, ϕ), we have m ∈ BH ∩ support(F, ϕ) = C ⊆ BF, that is, 
m ∈ BF. Then

fruitF(BF) ⊆ Fm = Gm ⊆ G0G

by (d) of Definition 25 and because G is nonincreasing, so (5) satisfies.
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Case 2. 0G ∉ BF.

Then by (d) of Lemma 6, there is b ∈ BF such that b ∥F 0G. Since F is splittable, we have Fb ∩F0G = ∅. 
Then since b ∈ BF, we have fruitF( BF) ⊆ Fb, so (5) satisfies again.

Now suppose that F is splittable and has strict branches, and each G ∈ ϕ has bounded chains. We 
must prove that H has strict branches; suppose it does not. Since F is complete, we already know that 
H is also complete, so there is BH ∈ branchesH such that ∣ fruitH( BH) ∣ > 1. Let C and BF be as above. 
It follows by (3) and (4) that ∣ fruitF( C) ∣ > 1, and ∣ fruitF( BF) ∣ = 1 since F has strict branches, so we 
have fruitF( C) ≠ fruitF( BF). Then, using (a) of Lemma 14, we see that C is not F-cofinal in BF because 
∅ ≠ C ⊆ BF ⊆ nodesF. Further, since C ⊆ BF, BF is a chain in F, and C is not F-cofinal in BF, it is not 
hard to show that there is x ∈ BF such that C ⊆ x ⫯F. Now we consider two cases:

Case 1. x ∈ support(F, ϕ).

Then x ⫯F ∩ support(F, ϕ) ⊆ x ⫯H. We have C ⊆ x ⫯F and C ⊆ support(F, ϕ), so C ⊆ x ⫯H. Then C$H ⊆ x ⫯H, 
so BH ⊆ x ⫯H because C is H-cofinal in BH, whence BH ⊂ x !H. This contradicts BH ∈ branchesH, since x !H
is a chain in H.

Case 2. x ∉ support(F, ϕ).

We have x ∈ nodesF ∖ support(F, ϕ), so by definition of support(F, ϕ) there is G ∈ ϕ such that x ∈
explant(F, G). Then (e) of Lemma 18 implies

x⫯F ∩ support(F, ϕ) ⊆ (0G)!F,

so C ⊆ ( 0G) !F. Since 0G ∈ support(F, ϕ), we have

(0G)!F ∩ support(F, ϕ) ⊆ (0G)!H,

whence C ⊆ ( 0G) !H. This implies C$H ⊆ ( 0G) !H, so BH ⊆ ( 0G) !H because C is H-cofinal in BH. Then 
BH = ( 0G) !H, since BH is a branch in H and ( 0G) !H is a chain in H. Thus we have 0G ∈ BH. Now (a) 
of Lemma 24 with (h) of Lemma 6 implies that BH ∩ nodesG = m!G for some m ∈ maxG. Then, since 
maxG ⊆ support(F, ϕ), we have m ∈BH∩ support(F, ϕ) = C. So m ∈ C and m >F 0G by (d) of Definition 15. 
This contradicts C ⊆ ( 0G) !F.

(e) Suppose that F and each G ∈ ϕ are open in a space X. Then H is open in the subspace X ∖ loss(F, ϕ)
of X by (b) of Definition 27. ◻

6. Application of the foliage hybrid operation

We will apply the foliage hybrid operation to a π-tree F of a space X in such a way that the fol.hybr(F, ϕ)
will be a π-tree on a subspace Y of X. To carry out this construction we need to answer (that is, to find 
some sufficient conditions) the following questions:

(i) When the fol.hybr(F, ϕ) is a Baire foliage tree on Y ?
(ii) When the fol.hybr(F, ϕ) grows into Y ?

The answer to question (i) is given in the following lemma:
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Lemma 30. Suppose that F is a Baire foliage tree on a space X and ϕ is a consistent family of foliage 
grafts for F such that every G in ϕ is ℵ0-branching, locally strict, open in X, has bounded chains, and has 
heightG ⩽ ω. Then the fol.hybr(F, ϕ) is a Baire foliage tree on X ∖ loss(F, ϕ).

Proof. Let H ∶= fol.hybr(F, ϕ). It follows from (c)–(f) of Proposition 23 and (i) of Lemma 6 that H is a 
foliage ω, ℵ0-tree and 0H = 0F, so H0H = F0F∖ loss(F, ϕ) = X∖ loss(F, ϕ). By (b) of Lemma 14, F is splittable, 
and then H is open in X ∖ loss(F, ϕ), locally strict, and has strict branches by (c)–(e) of Proposition 29. ◻

The answer to question (ii) is given in Lemma 32, and this answer raises another question: When the 
fol.hybr(F, ϕ) shoots into F? The answer to this question is given in Lemma 34.

Definition 31. Let H and F be foliage trees. Then

✎ H shoots into F ∶←→ ∀p ∈ fleshH ∀y ∈ scopeF( p ) ∃x ∈ scopeH( p ) [shootH( x ) ≫ shootF(y)].

Lemma 32. Suppose that a foliage tree H shoots into a foliage tree F and F grows into a space X. Then H
grows into the subspace X∩ fleshH of X.

Proof. Let Y ∶= X∩ fleshH, p ∈ Y , and U ∈ nbhds(p, Y ). Then there is V ∈ nbhds(p, X) such that U = V ∩Y , 
and there is y ∈ scopeF( p ) such that shootF(y) ≫ {V } because F grows into X. Since H shoots into F, there 
is x ∈ scopeH( p ) with the property shootH( x ) ≫ shootF(y). It follows that there is G ∈ shootH( x ) ∖{∅} such 
that G ⊆ V . Since G ⊆ fleshH, then G ⊆ V ∩ fleshH ⊆ X∩ fleshH = Y , so G ⊆ V ∩ Y = U . Therefore we have 
found x ∈ scopeH( p ) such that shootH( x ) ≫ {U}. ◻

Definition 33. Let F be a nonincreasing foliage tree and let G be a foliage graft for F. Then G preserves 
shoots of F iff

➢ for each p ∈ fleshG and for each y ∈ scopeF( p ) ∩ ({0G} ∪ explant(F, G))
➢ there is x ∈ scopeG( p ) ∩ ({0G} ∪ implantG) such that

✓ shootG( x ) ≫ shootF(y).

Lemma 34. Suppose that

➢ F is a nonincreasing foliage tree,
➢ ϕ is a consistent family of foliage grafts for F,
➢ the foliage hybrid of F and ϕ has nonempty leaves, and
➢ each G ∈ ϕ preserves shoots of F.

Then the foliage hybrid of F and ϕ shoots into F.

Proof. Let H ∶= fol.hybr(F, ϕ), p ∈ fleshH, and y ∈ scopeF( p ). We consider two cases:

Case 1. y ∈ support(F, ϕ) ∖ {0G ∶ G ∈ ϕ}.

By (a) of Proposition 23 we have sonsH(y) = sonsF(y), so

sonsH(y) ⊆ nodesF ∩ nodesH = support(F, ϕ)

by (b) of Lemma 21. Then by (b) of Definition 27 we have
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Hy = Fy ∖ loss(F, ϕ) and ∀s ∈ sonsH(y) [Hs = Fs∖ loss(F, ϕ)].

Further, p ∈ Fy and p ∈ fleshH, so p ∉ loss(F, ϕ), whence p ∈ Hy, that is, y ∈ scopeH( p ). Now, for x ∶= y and 
for each s ∈ sonsH( x ) = sonsH(y) = sonsF(y), we have ∅ ≠ Hs ⊆ Fs. This implies shootH( x ) ≫ shootF(y).

Case 2. ∃G ∈ ϕ [y ∈ {0G} ∪ explant(F, G)].

The foliage tree F is nonincreasing, p ∈ Fy, and y ⩾F 0G, so p ∈ F0G . We have p ∈ fleshH, so p ∉ loss(F, ϕ), 
hence p ∈ F0G implies p ∈ G0G . Then p ∈ fleshG and

y ∈ scopeF(p) ∩ ({0G} ∪ explant(F,G)),

so, since G preserves shoots F, there is

x ∈ scopeG(p) ∩ ({0G} ∪ implantG)

such that shootG( x ) ≫ shootF(y). Again, by (a) of Proposition 23 we have sonsH( x ) = sonsG( x ), so sonsH( x ) ⊆
nodesG. Then by (a) of Lemma 28 we have

Hx = Gx ∖ loss(F, ϕ) and ∀s ∈ sonsH(x) [Hs = Gs∖ loss(F, ϕ)].

We have p ∈ Gx and p ∉ loss(F, ϕ), so p ∈ Hx, that is, x ∈ scopeH( p ). Now, for each s ∈ sonsH( x ) = sonsG( x ), 
we have ∅ ≠ Hs ⊆ Gs. This implies shootH( x ) ≫ shootG( x ), so shootH( x ) ≫ shootF(y) because ≫ is 
transitive. ◻

7. Main construction

In this section we prove Theorem 37, which can be viewed as the main technical result of this paper. 
This theorem is a statement about the Baire space N and the standard foliage tree of ωω, which we denote 
by S — see Notation 12. The connection between N with S on the one hand and a space X with a π-tree 
on the other hand is explained by Lemma 13.

Notation 35. Let A ⊆ ωω and x ∈ <ωω. Recall that Sx = {p ∈ ωω ∶ x ⊆ p}. Then

✎ A is π-dense at x ∶←→ ∀y ∈ <ωω [y ⊇ x → ∣{n ∈ ω ∶ Sy ⟨̂n⟩ ⊆ A}∣ = ℵ0 ];
✎ A is π-dense in the Baire space ∶←→ ∀y ∈ <ωω [ ∣{n ∈ ω ∶ Sy ⟨̂n⟩ ⊆ A}∣ = ℵ0 ].

Remark 36.

(a) If K is a compact subset of N , then ωω ∖K is an open π-dense subset of N .
(b) If a set D is π-dense in N , then D is dense in N . ◻

Theorem 37. Suppose that Y = ⋂n∈ω Un, where each Un is an open π-dense subset of the Baire space. Then 
there is a Baire foliage tree on Y that shoots into the standard foliage tree of ωω (see Definitions 10, 12, 31, 
and 35).

Question 38. Does Theorem 37 remain true if we replace “π-dense” by “dense”?
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We will build this Baire foliage tree on Y which shoots into S by applying the foliage hybrid operation 
to S and ϕ, where ϕ is a consistent family of foliage grafts for S. We construct the family ϕ in the proof 
of Theorem 37, see below. The construction of a single foliage graft G (that will be a member of ϕ) is 
described in the following lemma:

Lemma 39. Suppose that v ∈ <ωω and O ⊂ Sv is open in the Baire space and is π-dense at v. Then there is 
a foliage tree G such that

(a1) 0G = v,
(a2) heightG ⩽ ω,
(a3) G is ℵ0-branching,
(a4) G has bounded chains,
(a5) G is locally strict,
(a6) G is open in the Baire space,
(a7) G is a foliage graft for S,
(a8) G preserves shoots of S,
(a9) implantG ≠ ∅,

(a10) cut(S, G) = Sv∖O, and
(a11) O ≡ ⊔z∈maxG Sz.

In the proof of Lemma 39 (see below) we verify clause (a8), which says that G preserves shoots of S. We 
do this by using the following lemma:

Lemma 40. Suppose that A, B are foliage trees with nonempty leaves, x ∈ nodesA, and y ∈ nodesB. Assume 
that ∣sonsA( x ) ∣ ⩾ ℵ0 and that there is finite F such that

∀s ∈ sonsA(x) ∖ F [ s ∈ sonsB(y) and As ⊆ Bs ].

Then shootA( x ) ≫ shootB(y). ◻

Proof of Lemma 39. Let

Ω ∶= {z ∈ v"S ∶ Sz ⊆ O}, Δ ∶= v"S∖Ω, and MAX ∶= min(Ω,<S).

Then we have

(b1) v ∈ Δ and ∣Δ∣ = ℵ0;
(b2) Δ = (Δ$S) ∩ (v"S);
(b3) MAX is an antichain in S;
(b4) MAX%S = Ω;
(b5) O ≡ ⊔z∈MAX Sz.

For each x ∈ Δ, define

Δx ∶= Δ ∩ (x"S) and Ωx ∶= sonsS(x) ∩Ω.

Then



346 M. Patrakeev / Topology and its Applications 221 (2017) 326–351
(c1) ∀x ∈ Δ [ x ∈ Δx and ∣Δx∣ = ℵ0 ];
(c2) ∀x ∈ Δ [ Ωx ⊆ MAX and ∣ Ωx∣ = ℵ0 ];
(c3) MAX ≡ ⊔x∈Δ Ωx.

Now for each x ∈ Δ and all d ∈ Δx, we can find infinite sets Ωx,d ⊆ Ωx in such a way that

∀x ∈ Δ [ Ωx ≡ ⊔d∈Δx
Ωx,d ]. (6)

Put

IMP ∶= {nodelx ∶ x ∈ Δ and l ∈ {0, . . . , l(x)}}

where

l(x) ∶= lengthx − lengthv

and nodelx are different new nodes for the skeleton of the foliage tree G such that IMP ∩ nodesS = ∅. Put

NOD ∶= {v} ∪ MAX ∪ IMP

(we intend to have nodesG = NOD, 0G = v, maxG = MAX, and implantG = IMP).
For x ∈ <ωω and l ∈ {0, . . . , lengthx}, define

x− l ∶= x ↾ ((lengthx) − l)

— that is, x− l = ⟨x0, . . . , x(lengthx)− l−1⟩ ∈ ω(lengthx)− l, x− 0 = x, and if x ∈ v"S, then x− l(x) = v. Using (b2) we 
have

(d1) ∀x ∈ Δ ∀l ∈ {0, . . . , l( x )} [x− l ∈ Δ and x ∈ Δx−l ];
(d2) {(x− l, x) ∶ x ∈ Δ and l ∈ {0, . . . , l( x )}} = {(z, d) ∶ z ∈ Δ and d ∈ Δz}.

Now we build a tree (NOD, <), which will be a skeleton for the foliage tree G. First we define a relation 
⋖ on the set NOD as the relation that satisfies exactly the following:

➢ for each x ∈ Δ,
v ⋖ nodel(x)x ⋖ nodel(x)−1x ⋖ . . . ⋖ node1

x ⋖ node0
x;

➢ for each x ∈ Δ and each l ∈ {0, . . . , l( x )},
nodelx ⋖ z for all z ∈ Ωx−l, x.

Note that the last clause is correct by (d1). Then let relation < be the transitive closure of relation ⋖. That 
is, for each a, b ∈ NOD,

a < b ∶←→ ∃n ∈ ω ∃ z0, . . . , zn+1 ∈ NOD [a = z0 ⋖ z1 ⋖ . . . ⋖ zn+1 = b ].

Let T ∶= (NOD, <). Then it is not hard to show the following:

(e1) sonsT (node0
x) = Ωx−0, x for all x ∈ Δ;

sonsT (nodelx) = Ωx−l, x ∪ {nodel−1x } for all x ∈ Δ and l ∈ {1, . . . , l( x )};
sonsT ( v) = {nodel(x)x ∶ x ∈ Δ}.
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(e2) ∀x ∈ Δ [ v ⊏T nodel(x)x ⊏T nodel(x)−1x ⊏T . . . ⊏T node1
x ⊏T node0

x ];
in particular, v ⊏T nodel(v)v = node0

v.
(e3) maxT = MAX.

Indeed, using (d2), (c3), and (6), we get

maxT = ⋃{Ωx−l, x ∶ x ∈ Δ and l ∈ {0, . . . , l(x)}} = ⋃{Ωz,d ∶ z ∈ Δ and d ∈ Δz} = MAX.

(e4) T is an ℵ0-branching tree with the least node and 0T = v.
(e5) T has bounded chains and heightT ⩽ ω.

To prove (e5) it is enough to show that each chain in T is finite. If C is a chain in T , then by (c) of 
Lemma 6, there is B ∈ branchesT such that C ⊆ B, and it follows using (e) of Lemma 6 that there 
exists some s in B ∩ sonsT (0T ). Then s = nodel(x)x for some x ∈ Δ, so ∣B ∣ ⩽ l( x ) + 3.

(e6) T is a graft for S and implantT = IMP.
(e7) explant(S, T ) = Δ ∖ { v}.

Indeed, using (b4), we have

explant(S,T ) ∶= (0T)⫰S∖ (maxT )%S = v⫰S ∖MAX%S =

(v"S∖ {v}) ∖Ω = (v"S∖Ω) ∖ {v} = Δ ∖ {v}.

Now we build a foliage tree G with skeletonG = T as follows:

➢ Gz ∶= Sz for all z ∈ MAX;
➢ Gnode0x ∶= ⋃{Sz ∶ z ∈ Ωx−0, x} for all x ∈ Δ;
➢ Gnodelx ∶= Gnodel−1x

∪ ⋃{Sz ∶ z ∈ Ωx−l, x} for all x ∈ Δ and l ∈ {1, . . . , l( x )} (by recursion on l);
➢ Gv ∶= ⋃{Gnodel(x)x

∶ x ∈ Δ}.

Then (e1), (c3), (6), and disjointness of the union from (b5) imply that G is locally strict. Also it is not 
hard to show that G is nonincreasing, 0G = v, heightG ⩽ ω, G is ℵ0-branching, G has bounded chains, 
G is open in the Baire space, G is a foliage graft for S, implantG ≠ ∅, and O ≡ ⊔z∈maxG Sz. To prove that 
cut(S, G) = Sv∖O we must show that G0G = O. Since G is nonincreasing, we have G0G = fleshG, so using 
(b) of Lemma 14, (h) of Lemma 6, and (b5) we have

G0G = fleshG = yieldG = ⋃{ fruitG(B) ∶ B ∈ branchesG} =

⋃{ fruitG(z!G) ∶ z ∈ maxG} = ⋃{Gz ∶ z ∈ maxG} = ⋃{Sz ∶ z ∈ MAX} = O.

It remains to prove that G preserves shoots of S. Suppose

p ∈ fleshG = G0G = O, y ∈ {0G} ∪ explant(S,G) = Δ, and Sy ∋ p.

We must find x ∈ { v} ∪ IMP such that Gx ∋ p and shootG( x ) ≫ shootS(y). Note that G has nonempty 
leaves and ∣ sonsG( x ) ∣ ⩾ ℵ0 for all x ∈ { v} ∪ IMP since G is ℵ0-branching and { v} ∪ IMP ⊆ nodesG ∖ maxG. 
Lemma 40 says that if there is finite F such that

∀s ∈ sonsG(x) ∖ F [ s ∈ sonsS(y) and Gs ⊆ Ss ],

then shootG( x ) ≫ shootS(y). If x ∈ IMP, then by (e1), (c3), and (6) there is finite L such that sonsG( x ) ∖L ⊆
MAX, so for all s ∈ sonsG( x ) ∖L we have Gs = Ss.
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Summarizing the above reasoning we come to the following. Suppose y ∈ Δ and p ∈ O∩Sy. Then to finish 
the proof it is enough to find x ∈ IMP and finite F such that

Gx ∋ p and sonsG(x) ∖ F ⊆ sonsS(y). (7)

Since p ∈ O, then by (b5) there is ż ∈ MAX such that p ∈ Sż. Then Sż ∩ Sy ≠ ∅, so either y ⩾S ż or y <S ż

since S is splittable. If y ⩾S ż, then by (b4) y ∈ Ω, which contradicts y ∈ Δ, so y <S ż. Let w ∶= ż−1. Then we 
have

v ⩽S y ⩽S w ⊏S ż ∈ MAX = min(Ω,<S) ⊆ Ω,

which implies w ∈ Δ and ż ∈ Ωw. Then it follows by (6) that there is d ∈ Δw such that ż ∈ Ωw,d. Now we 
have

v ⩽S y ⩽S w ⩽S d ∈ Δ, ż ∈ Ωw,d , and p ∈ Sż.

Let l ∶= lengthd − lengthy and m ∶= lengthd − lengthw. Then d−l = y, d−m = w, and 0 ⩽ m ⩽ l ⩽ l( d ), so we may 
consider nodes nodeld and nodemd in IMP. Then x ∶= nodeld satisfies condition (7). Indeed, nodeld ⩽G nodemd
by (e2) and G is nonincreasing, so

Gx = Gnodeld
⊇ Gnodemd ⊇ ⋃{Sz ∶ z ∈ Ωd−m,d} = ⋃{Sz ∶ z ∈ Ωw,d} ⊇ Sż ∋ p.

Finally, by (e1) there is finite F such that

sonsG(x) ∖ F = sonsG(nodeld) ∖ F = Ωd−l,d = Ωy,d ⊆ Ωy ⊆ sonsS(y). ◻

Proof of Theorem 37. Let v ∈ <ωω and n ∈ ω. Put O ∶= Un ∩ Sv and assume that O ≠ Sv. Then there 
is a foliage tree G that satisfies conditions (a1)–(a11) of Lemma 39. Let us denote this foliage tree G by 
G(v, n). Using this notation, we construct sequences (Zn)n∈ω, (ψn)n∈ω, and (Mn)n∈{−1}∪ω by recursion on 
n as follows:

(f1) M−1 ∶= {0S};
(f2) Zn ∶= {x ∈ Mn−1 ∶ Un ∩ Sx ≠ Sx};
(f3) ψn ∶= {G(x, n) ∶ x ∈ Zn};
(f4) Mn ∶= (Mn−1∖Zn) ∪ ⋃G∈ψn

maxG.

For each n ∈ ω, we will prove the following:

(g1) Zn = {0G ∶ G ∈ ψn};
(g2) Mn is an antichain in S;
(g3) (Mn)%S ∩⋃i⩽nZi = ∅;
(g4) ⋃i⩽n ψi is a consistent family of foliage grafts for S;
(g5) ⋃y∈Mn

Sy = ⋂i⩽nUi;
(g6) ⋃{cut(S, G) ∶ G ∈ ⋃i⩽n ψi} = ωω ∖⋂i⩽nUi.

Let us first show that (g1)–(g6) yield the conclusion of the theorem. Put ϕ ∶= ⋃n∈ω ψn, so (g4) implies 
that ϕ is a consistent family of foliage grafts for S. Then H ∶= fol.hybr(S, ϕ) satisfies the requirements of the 
theorem. Indeed, (g6) implies that loss(S, ϕ) = ωω∖⋂n∈ω Un, so it follows from Lemma 30, (a) of Lemma 13, 
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and (a2)–(a6) that H is a Baire foliage tree on Y . Then H has nonempty leaves, therefore H shoots into S
by (a8) and Lemma 34.

It remains to prove that (g1)–(g6) hold for all n ∈ ω. Condition (g1) easily follows from definitions of 
Zn and ψn: if x ∈ Zn, then x = 0G(x,n) by (a1), so Zn = {0G(x,n) ∶ x ∈ Zn} = {0G ∶ G ∈ ψn}. Conditions 
(g2)–(g6) will be proved by induction. Using (a1)–(a11), and (d)–(e) of Definition 15, it is not hard to show 
that (g2)–(g6) are satisfied when n = 0. Assume as induction hypothesis that (g2)–(g6) hold for all n ⩽ k. 
We must prove that (g2)–(g6) hold for n = k + 1.

(g2) We prove that Mk+1 is an antichain in S. Suppose v ≠ w ∈ Mk+1. We consider several cases:

(i) v, w ∈ Mk.
Then v ∥S w by the induction hypothesis.

(ii) v, w ∈ Mk+1 ∖Mk.
It follows by (f4) that there are D, E ∈ ψk+1 such that v ∈ maxD and w ∈ maxE.
(ii.1) 0D ≠ 0E.

We have 0D, 0E ∈ Zk+1 ⊆ Mk by (g1) and (f2), so 0D ∥S 0E by the induction hypothesis. Then 
v ∥S w by using (b) of Lemma 6 twice.

(ii.2) 0D = 0E.
It follows from (f3) and (a1) that D = G(0D, k + 1 ) = G(0E, k + 1 ) = E, so we have v, w ∈ maxD. 
Consequently v ∥S w by (a7) and (e) of Definition 15.

(iii) ∣{v, w} ∩Mk ∣ = 1.
We may assume without lost of generality that v ∈ Mk+1 ∖Mk and w ∈ Mk+1 ∩Mk. Again, as in (ii), 
there is D ∈ ψk+1 such that v ∈ maxD, and then v >S 0D and 0D ∈ Zk+1 ⊆ Mk.
(iii.1) 0D ≠ w.

We have v >S 0D and 0D ∥S w the induction hypothesis (because 0D, w ∈ Mk), so v ∥S w by (b) 
of Lemma 6.

(iii.2) 0D = w.
We have w ∈ Mk+1 and w = 0D ∈ Zk+1, so it follows from (f4) that there is F ∈ ψk+1 such that 
w ∈ maxF. Consequently, w >S 0F and 0F ∈ Zk+1. This contradicts the induction hypothesis 
because w, 0F ∈ Zk+1 ⊆ Mk.

(g3) We must prove that (Mk+1)%S ∩ ⋃i⩽k+1Zi = ∅. Suppose on the contrary that there is some x ∈
(Mk+1)%S∩ ⋃i⩽k+1Zi. Since by (g2) with n = k+1 (which is already proved), Mk+1 is an antichain in S, then 
we may consider

r ∶= rootS(x,Mk+1) ∈ Mk+1 = (Mk∖Zk+1) ∪ ⋃
G∈ψk+1

maxG.

(i) ∃ G ∈ ψk+1 [ r ∈ maxG ].
Then x ⩾S r >S 0G ∈ Zk+1 ⊆ Mk, therefore x ∈ (Mk)%S, so x ∉ ⋃i⩽k Zi by (g3) with n = k, and hence 
x ∈ Zk+1 ⊆ Mk. Now we have x >S 0G and x, 0G ∈ Mk, which contradicts (g2) with n = k.

(ii) r ∈ Mk ∖Zk+1.
Then we have x ⩾S r ∈ Mk, therefore as in (i) we get x ∈ (Mk)%S, x ∉ ⋃i⩽k Zi, and x ∈ Zk+1 ⊆ Mk. Also 
we have x ≠ r because r ∉ Zk+1, consequently x >S r and x, r ∈ Mk, which again contradicts (g2) with 
n = k.

(g4) We must prove that ⋃i⩽k+1 ψi is a consistent family of foliage grafts for S. Every G ∈ ⋃i⩽k+1 ψi is 
a foliage graft for S by (a7). Suppose D ≠ E ∈ ⋃i⩽k+1 ψi. We may assume that implantD ∩ implantE = ∅
by construction, and then skeletonD ≠ skeletonE because implants of D and E are nonempty by (a9). It 
remains to check clause (c) of Definition 17. We consider several cases:
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(i) D, E ∈ ⋃i⩽k ψi.
Then (c) of Definition 17 is satisfied by the induction hypothesis.

(ii) D, E ∈ ψk+1.
Then by (f3) D = G(x, k+1 ) and E = G(y, k+1 ) for some x ≠ y ∈ Zk+1, so it follows by using (f2), (g1), 
and (a1) that

Mk ⊇ Zk+1 ∋ 0D = 0G(x,k+1) = x ≠ y = 0G(y,k+1) = 0E ∈ Zk+1 ⊆ Mk.

Consequently, 0D ∥S 0E by (g2) with n = k.
(iii) ∣{D, E} ∩ψk+1 ∣ = 1.

Suppose without lost of generality that D ∈ ⋃i⩽k ψi and E ∈ ψk+1. Then by (g1) 0D ∈ ⋃i⩽k Zi and 
0E ∈ Zk+1 ⊆ Mk ⊆ (Mk)%S, so it follows by using (g3) with n = k that 0D ≠ 0E. If 0D ∥S 0E, then clause 
(c) of Definition 17 holds. It remains to consider the following two cases:
(iii.1) 0D >S 0E.

We have 0D ∈ ⋃i⩽k Zi and 0D >S 0E ∈ Zk+1 ⊆ Mk, so 0D ∈ (Mk)%S. This contradicts (g3) with 
n = k.

(iii.2) 0E >S 0D.
Now, D ∈ ⋃i⩽k ψi and ⋃i⩽k ψi is a consistent family of foliage grafts for S by the induction 
hypothesis. Further, 0E ∈ Zk+1 ⊆ Mk and it is not hard to show that

Mk ⊆ {0S} ∪⋃{maxG ∶ G ∈ ⋃i⩽k ψi}

by induction on k. Then it follows from (b) of Lemma 18 that 0E ∈ support(S, ⋃i⩽k ψi). Further-
more, (d) of Lemma 18 says that 0E ∈ support(S, ⋃i⩽k ψi) plus 0E >S 0D imply 0E ∈ (maxD)%S, 
so (c) of Definition 17 holds.

(g5) We must prove that ⋃y∈Mk+1Sy = ⋂i⩽k+1 Ui. Put B ∶= ⋃y∈Mk∖Zk+1 Sy. Then (f2) implies

B = ⋃{Uk+1 ∩ Sy ∶ y ∈ Mk∖Zk+1}. (8)

Now, using (f4), (f3), (a11), (8), and (g5) with n = k, we have

⋃
y∈Mk+1

Sy = B ∪ ⋃{Sy ∶ y ∈ ⋃G∈ψk+1maxG} = B ∪ ⋃{Sy ∶ y ∈ ⋃x∈Zk+1max G(x, k + 1)} =

B ∪ ⋃
x∈Zk+1

(⋃{Sy ∶ y ∈ max G(x, k + 1)}) = B ∪ ⋃
x∈Zk+1

(Uk+1∩ Sx) =

⋃
x∈Mk

(Uk+1∩ Sx) = Uk+1 ∩ ⋃
x∈Mk

Sx = Uk+1 ∩ ⋂
i⩽k

Ui = ⋂
i⩽k+1

Ui.

(g6) We must prove that ⋃{cut(S, G) ∶ G ∈ ⋃i⩽k+1 ψi} = ωω ∖ ⋂i⩽k+1 Ui. Put A ∶= ⋂i⩽k Ui, so that the 
induction hypothesis asserts

⋃{cut(S,G) ∶G ∈ ⋃i⩽k ψi} = ωω ∖A. (9)

Then using (9), (f3), (a10), (f2), and (g5) with n = k, we have

⋃{cut(S,G) ∶G ∈ ⋃i⩽k+1 ψi} = (ωω ∖A) ∪ ⋃
G∈ψk+1

cut(S,G) = (ωω ∖A) ∪ ⋃
x∈Zk+1

cut(S,G(x, k + 1)) ∪ ∅ =

(ωω ∖A) ∪ ⋃ (Sx∖ (Uk+1∩ Sx)) ∪ ⋃ ∅ = (ωω ∖A) ∪ ⋃ (Sx∖Uk+1) ∪ ⋃(Sx∖Uk+1) =

x∈Zk+1 x∈Mk∖Zk+1 x∈Zk+1 x∈Mk∖Zk+1
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(ωω ∖A) ∪ ⋃
x∈Mk

(Sx∖Uk+1) = (ωω ∖A) ∪ (( ⋃
x∈Mk

Sx) ∖Uk+1) =

(ωω ∖A) ∪ (A ∖Uk+1) = ωω ∖ (A ∩ Uk+1) = ωω ∖⋂i⩽k+1 Ui. ◻

8. Main results

In this section we prove theorems that allow to construct π-trees for subspaces of a space that already 
has a π-tree. Recall that S is the standard foliage tree of ωω, see Notation 12.

Theorem 41. Suppose that S is a π-tree on a space (ωω, τ). Let Y = ⋂n∈ω Un, where each Un is an open 
π-dense2 subset of the Baire space (ωω, τN). Then Y as a subspace of (ωω, τ) has a π-tree.

Using Lemma 13, we can apply this theorem not only to a space of the form (ωω, τ), but to an arbitrary 
space with a π-tree.

Question 42. Does Theorem 41 remain true if we replace “π-dense” by “dense”?

Proof of Theorem 41. Let ρ( τ) and ρ( τN) be topologies on Y inherited from τ and τN respectively. Theorem 37
asserts that there is a Baire foliage tree H on (Y, ρ( τN)) that shoots into S. Then H is a Baire foliage tree 
on (Y, ρ( τ)) because ρ( τ) ⊇ ρ( τN) by (b) Lemma 13, and H grows into (Y, ρ( τ)) by Lemma 32 because 
fleshH = Y . Therefore H is a π-tree on (Y, ρ( τ)). ◻

Remark 43. The construction of a π-tree in the proof of Theorem 41 does not depend on topology τ .

Theorem 44. Suppose that a space X has a π-tree and Y = X ∖ F , where F is a σ-compact subset of X. 
Then Y also has a π-tree.

Corollary 45. Suppose that a space X has a π-tree and Y = X ∖C, where C is at most countable. Then Y
also has a π-tree. ◻

Proof of Theorem 44. Let F = ⋃n∈ω Kn, where each Kn is a compact subset of X. By (d) of Lemma 13, there 
is a homeomorphism f from X onto a space (ωω, τ) such that S is a π-tree on (ωω, τ). Also it follows from (b) 
of Lemma 13 that each f(Kn) is a compact subset of the Baire space (ωω, τN). Then every Un ∶= ωω∖f(Kn)
is an open π-dense subset of the Baire space by Remark 36, so the subspace ωω ∖⋃n∈ω f(Kn) = ⋂n∈ω Un of 
(ωω, τ) has a π-tree by Theorem 41. ◻

References

[1] M. Patrakeev, Metrizable images of the Sorgenfrey line, in: Topology Proceedings, vol. 45, 2015, pp. 253–269.
[2] A.S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156, Springer, 1994.
[3] K. Kunen, Set Theory, North-Holland, 1980.
[4] T. Jech, Set Theory, 2nd edition, Springer, 1996.
[5] K.P. Hart, J. Nagata, J.E. Vaughan (Eds.), Encyclopedia of General Topology, Elsevier, Amsterdam, 2004.
[6] M. Patrakeev, The foliage hybrid operation, slides from the talk at Alexandroff Readings, May 22–26, 2016, Moscow, Russia, 

available at https://arxiv.org/src/1512.02458v5/anc.
2 See Definition 35.

http://refhub.elsevier.com/S0166-8641(17)30127-X/bib4D50617472s1
http://refhub.elsevier.com/S0166-8641(17)30127-X/bib6B656368s1
http://refhub.elsevier.com/S0166-8641(17)30127-X/bib6B756Es1
http://refhub.elsevier.com/S0166-8641(17)30127-X/bib6A656368s1
http://refhub.elsevier.com/S0166-8641(17)30127-X/bib746F702E656E63s1
https://arxiv.org/src/1512.02458v5/anc

	The complement of a  σ-compact subset of a space with a π-tree also has a π-tree
	1 Introduction
	2 Notation and terminology
	3 Foliage trees
	4 Hybrid operation
	5 Foliage hybrid operation
	6 Application of the foliage hybrid operation
	7 Main construction
	8 Main results
	References


