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Weak antilocalization of holes in HgTe quantum wells with a normal energy spectrum
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The results of experimental study of interference induced magnetoconductivity in narrow HgTe
quantum wells of hole-type conductivity with a normal energy spectrum are presented. Interpreta-
tion of the data is performed with taking into account the strong spin-orbit splitting of the energy
spectrum of the two-dimensional hole subband. It is shown that the phase relaxation time found
from the analysis of the shape of magnetoconductivity curves for the relatively low conductivity
when the Fermi level lies in the monotonic part of the energy spectrum of the valence band behaves
itself analogously to that observed in narrow HgTe quantum wells of electron-type conductivity. It
increases in magnitude with the increasing conductivity and decreasing temperature following the
1/T law. Such a behavior corresponds to the inelasticity of electron-electron interaction as the main
mechanism of the phase relaxation and agrees well with the theoretical predictions. For the higher
conductivity, despite the fact that the dephasing time remains inversely proportional to the temper-
ature, it strongly decreases with the increasing conductivity. It is presumed that a nonmonotonic
character of the hole energy spectrum could be the reason for such a peculiarity. An additional
channel of the inelastic interaction between the carriers in the main and secondary maxima occurs
when the Fermi level arrives the secondary maxima in the depth of the valence.

I. INTRODUCTION

New type of two-dimensional (2D) systems, which en-
ergy spectrum is formed by the spin-orbit interaction has
attracted considerable interest during the last decade.
The structures with HgTe quantum well (QW) hold spe-
cial place among such structures. The strong intrinsic
spin-orbit interaction leads to the energetic inversion of
the Γ8 and Γ6 bands in the bulk spectrum of HgTe. The
Γ6 band, which is the conduction band in the usual semi-
conductors, is located lower in energy than the Γ8 band
so that the last forms both the conduction and valence
bands, which are not separated by the gap. It results in
nontrivial dependence of the energy gap on the width
of quantum well (d) and causes other important fea-
tures of the energy spectrum. So the energy spectrum in
CdTe/HgTe/CdTe quantum well at d = dc ≃ 6.5 nm is
gapless1 and is close to the linear Dirac-like spectrum at
small quasimomentum (k).2 When the HgTe layer is thin,
d < dc, the ordering of energy subbands of spatial quan-
tization is analogous to that in conventional narrow-gap
semiconductors; the highest valence subband at k = 0 is
formed from the heavy hole Γ8 states, while the lowest
electron subband is formed both from the Γ6 states and
light hole Γ8 states. For thick HgTe layer, d > dc, the
quantum well is in the inverted regime; the main elec-
tron subband is formed from the heavy hole Γ8 states,3

whereas the subband formed from the Γ6 states and light
hole Γ8 states sinks into the valence band. This in turn
leads to a significant modification of the kinetic phenom-
ena and to arising of new ones. Besides, the energy spec-
trum of HgTe based heterostructures is very sensitive
to a structure asymmetry due to strong Bychkov-Rasba
effect.4

The effects that depend not only on the energy spec-

trum, but on the wave functions also, have even more
strong peculiarities. The interference contribution to the
conductivity is just this effect. The suppression of in-
terference by the magnetic field leads to the arising of
the low-magnetic-field weak-localization (WL) or weak-
antilocalization (WaL) magnetoconductivity (MC). Ex-
perimentally, the low field magnetoconductivity of 2D
electron gas in HgTe QW’s was observed in Refs. 5 and
6 and investigated in detail in Refs. 7 and 8. There was
shown8 that the MC curves for the structures with nor-
mal spectrum, d < dc, are well described by the conven-
tional Hikami-Larkin-Nagaoka (HLN) expression9 within
a wide conductivity range. The phase relaxation time
(τφ) found from the fit of MC curves to this expression
increases with the temperature decrease as 1/T , that cor-
responds to the case when inelasticity of electron-electron
(e-e) interaction is the main dephasing mechanism.10 It is
important that the τφ value increases with increasing con-
ductivity and this dependence is close to that predicted
for this dephasing mechanism:11 τφ ∝ σ/ lnσ, where σ is
the conductivity measured in units of G0 = e2/(2π2

~).
Thus, the interference correction to the conductivity of
electron 2D gas in HgTe QW’s with d < dc behaves the
same as the correction in the usual 2D structures.

Another behavior of τφ was observed for electrons in
the structures with inverted spectrum, d = (9− 10) nm.7

Whereas the temperature dependence of τφ remains con-
ventional, τφ ∝ 1/T , the σ dependence of τφ is strange:
τφ is practically independent of conductivity. And this
occurs in spite of the fact that MC is well described by the
HLN expression also. The reason of such a phenomenon
is yet to be explained.

Concerning the weak localization in the hole 2D HgTe
based systems, the theories12,13 predict that the interfer-
ence quantum correction for electrons and holes should
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be close to each other both for d . dc and d & dc. This
is because the energy spectra of the conduction and va-
lence bands near critical point d = dc are identical for
d . dc and d & dc for small quasimomentum values.2

Experimental studies of the weak localization in the hole
HgTe QW’s are absent to the best of our knowledge.

In this paper we present the results of experimental in-
vestigation of interference induced magnetoconductivity
in the gated HgTe quantum wells of hole-type conduc-
tivity with normal energy spectrum. The measurements
were performed on the same heterostructures, whose en-
ergy spectra were studied in Ref. 14. The specific feature
of the samples is the strong spin-orbit splitting of the
spectrum due to the asymmetry of the quantum well.
Analyzing the shape of the magnetoconductivity curves
with taking this fact into account we obtain the phase
relaxation time within a wide conductivity range at dif-
ferent temperatures. We show that the phase relaxation
time increases in magnitude with the decreasing temper-
ature following the 1/T law indicating that the inelastic-
ity of e-e interaction is the main mechanism of the phase
relaxation. The conductivity dependence of τφ is also
usual for such a dephasing mechanism at low conductiv-
ity, σ . 100G0; the dephasing time increases with the
increasing conductivity. For the higher conductivity, the
behavior of τφ changes drastically. It strongly decreases
with σ. The experimental results are discussed having
regard to nonmonotonic character of the hole dispersion
law.

II. EXPERIMENTAL

Our samples with HgTe quantum wells were realized on
the basis of two HgTe/Hg1−xCdxTe (x = 0.55−0.65) het-
erostructures grown by molecular beam epitaxy on GaAs
substrate with the (013) surface orientation.15 The nom-
inal width of the quantum well was 5.8 nm and 5.6 nm in
the structures H724 and H1122, respectively. The quan-
tum wells were of hole-type conductivity. The results for
these structures are similar and we will mainly discuss
the results which were obtained for the structure H724
with the higher Hall mobility. The samples were mesa
etched into standard Hall bars of 0.5 mm width and the
distance between the potential probes of 0.5 mm. To
change and control the hole density (p) in the quantum
well, the field-effect transistors were fabricated with pary-
lene as an insulator and aluminium as a gate electrode.
For each heterostructure, four samples were fabricated
and studied. The hole density was about 1 × 1011 cm−2

for zeroth gate voltage and something less in the struc-
ture H1122. The measurements were performed at tem-
perature of 1.3− 4.2 K.
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Figure 1. (Color online) (a) – The gate voltage dependence of
the Hall density pH = 1/[eRH(0.1 T)] (diamonds) and densi-
ties p1 and p2 (triangles and circles, respectively) in the spin
split subbands found from the SdH oscillations (for more de-
tails, see Ref. 14). The solid line is drawn with the slope
−1.5× 1010 cm−2V−1, the dotted line is provided as a guide
to the eye. (b) – The conductivity plotted against the hole
density. The data shadowed correspond to the regime where
τφ drops with the increasing conductivity [see. Fig. 5(a)]. (c)
– The energy spectrum of the valence band. Symbols are
restored from the experimental data.14 The lines are the re-
sults of theoretical calculation with taking into account the
electric field in the well. The inset shows the energy dia-
gram of the structure calculated under the assumption that
acceptor and donor densities in the lower and upper barriers,
are 3 × 1017 cm−3. (d) – The energy dependencies of the
effective masses for the H1+ and H1− hole subbands. The
symbols are the data,14 the solid lines are the calculation re-
sults. The dashed curve is the average value of the effective
mass mav = (m1 +m2)/2.

III. RESULTS AND DISCUSSION

The WL correction and MC curves depend not only
on the momentum-, phase-, and spin-relaxation times
but on the energy spectrum also. Therefore, before dis-
cussing the low-field magnetoconductivity let us look the
hole energy spectrum of the structures under study that
was restored when analyzing the data of the transport
measurements in Ref. 14.

The gate voltage dependence of the Hall density,
pH = 1/[eRH(0.1 T)], where RH is the Hall coefficient
RH = ρxy/B, and the hole densities that were found
from the periods of Shubnikov-de Haas (SdH) oscilla-
tions are shown in Fig. 1(a). One can see that pH lin-
early changes with Vg with a slope dpH/dVg of about
−1.5×1010 cm−2V−1 at −2.5 < Vg < 4 V, where the hole
density is less than ≃ 1.5× 1011cm−2. At Vg . −3.5 V,
the slope becomes much less. Note that capacitance be-
tween the gate electrode and the 2D channel measured on
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Figure 2. (Color online) (a) – The magnetic field dependences
of ∆σ for different conductivity values at T = 1.35 K. The
arrows show the values of Btr. (b) – The same data plotted
against the relative magnetic field b = B/Btr. For clarity, the
curves are shifted in the vertical direction.

the same sample is constant over the whole gate voltage
range so that the value of C/e = (1.4± 0.15)× 1010cm−2

is very close to |dpH/dVg| = 1.5 × 1010 cm−2V−1. Ana-
lyzing these data together with the data obtained from
the analysis of the temperature dependences of the SdH
oscillations amplitude, we have reconstructed the energy
spectrum near the valence band top in Ref. 14. These
results are reproduced in Fig. 1(c). One can see first
of all that the valence band is strongly split by spin-
orbit interaction, so that the ratio of the hole densities
in the subbands is approximately equal to two. The en-
ergy spectrum is strongly non-parabolic, i.e., the hole
effective masses significantly increases with the energy
increase [Fig. 1(d)]. These results are well described
within the framework of the kP model if one supposes
that the lower barrier remains of p type, while the upper
one is converted to the n type after the growth stop,
so that the quantum well is located in a strong elec-
tric field of p-n junction. The other key feature of the
calculated spectrum is the secondary maxima located at
k ≃ 4× 106 cm−2 at an energy distance of about 30 meV
from the main maxima. As suggested in Ref. 14 these
maxima can be responsible for flattening of the pH vs Vg
dependence at Vg . −3.5 V.
Now we are in position to analyze the low-field magne-

toconductivity ∆σ(B) = 1/ρxx(B)−1/ρxx(0). These de-
pendencies for different conductivities controlled by the
applied gate voltage are shown in Fig. 2. It is seen that
the negative magnetoconductivity (antilocalization be-
havior) is observed at low magnetic field. In the higher
magnetic field, MC reverses the sign demonstrating the
localization behavior. As evident the higher is the con-
ductivity, the lower is this field at which such a crossover
occurs.
It is well known that the characteristic field for the

weak localization is a transport magnetic field Btr =
~/(2el2) = π3

~p/e × (G0/σ)
2 with l as the transport

mean free path, therefore in Fig. 2(b) we have plotted
∆σ against b = B/Btr.

16 As evident the crossover from
the antilocalization to localization behavior of magneto-
conductivity takes place at b & 1 for all the conductivity
values. Since the minimum is observed in relatively high
magnetic field B ≃ (0.02− 0.07) T [Fig. 2(a)], it is quite
possible that a different mechanism, for example, the e-e
interaction correction to the conductivity is responsible
for the change of the MC sign.
The quantitative analysis of the magnetic field depen-

dence of the conductivity resulting from the suppression
of the interference correction by the magnetic field is not
a simple problem for our case because the valence band
is strongly split by spin-orbit interaction. Since the hole
effective masses in spin subbands are different, the mobil-
ities can be different and, hence, the transport magnetic
fields as well as the τ to τφ ratio can be different also.
To the best of our knowledge the WL magnetoconduc-
tivity for such a specific situation is as yet not calcu-
lated. However, there are two limiting cases when the
expression for the magnetoconductivity can be obtained
from qualitative considerations: (i) the transitions be-
tween subbands are slow as compared with the dephasing
processes, τ12 ≫ τφ, where τ12 is the transition time, and
(ii) they are fast, τ12 ≪ τφ.
In the first case, τ12 ≫ τφ, the total WL magnetocon-

ductivity is simply the sum of independent contributions
from each spin subbands:

∆σ = ∆σ1 +∆σ2. (1)

Here, ∆σ1 and ∆σ2 are antilocalizing because the carrier
spin is rigidly coupled with the momentum due to the
Bychkov-Rashba effect so that:17

∆σ = −
G0
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)

− ln
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)

, b . 1,

ψ(x) is a digamma function, and i = 1, 2 numbers the
spin subbands. Obviously it is impossible to find reliably
the dephasing times while fitting the smooth curve, if the
subband parameters entering Eq. (2) is strongly different
and unknown independently with high enough accuracy.
It becomes possible only when the corresponding param-
eters of subbands are close to each other. Then, in the
first approximation, Eq. (2) is reduced to

∆σ = αG0H

(

B

Btr

,
τ

τφ

)

(3)

with α ≃ −1, which can be already used to find τφ.
If a carrier executes many transitions between sub-

bands within the phase breaking time, i.e., τ12 ≪ τφ,
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Figure 3. (Color online) (a) – The magnetic field dependence
of ∆σ for σ = 46.0G0 measured at T = 1.35 K. Symbols are
the experimental data, the curves are the best fit to Eq. (3)
made within the magnetic filed range b = (0− bmax), bmax =
0.3. (b) and (c) – The dependence of the fitting parameters τφ
and α, respectively, on the upper limit of the fitting magnetic
field range, bmax. The dashed curves in (b) and (c) are the
fitting parameters plotted against bmax as they are obtained
when Eq. (3) is used for the fitting of the MC curve calculated
for τφ = 2 × 10−11 s and τφ/τ = 30 in the framework of the
model valid beyond the diffusion regime (for more details, see
Ref. 20).

the magnetoconductivity has the same form, Eq. (3),
in which, however, the prefactor α is equal to −1/2 in-
stead of −1, and the parameters Btr, τ , and τφ are av-
erages over two subbands.18,19 Qualitatively, this can be
explained by the fact that the probability of return to
the starting point after traveling over closed path, while
remaining in the same subband, is reduced by half.
Our analysis of the magnetic field dependences of the

resistivity components ρxx and ρxy performed in Ref. 16
within classical magnetic field range allows us to esti-
mate the hole densities and mobilities in the different
spin subbands and, thus, estimate the τi and B

(i)
tr val-

ues. It turns out that the values of τ1B
(1)
tr and τ2B

(2)
tr ,

which are determined the run of MC curve [see Eq. (2)]
at b < 1, are close to each other within accuracy better
than 30 % over the whole conductivity range. Besides,
simulating the WaL MC curves we show ibidem that the
use of one-band formula, Eq. (3), allows us to obtain the
dephasing rate with accuracy better than 10 % both for
τ12 ≪ τφ and τ12 ≫ τφ. Thus, the use of Eq. (3) for the
data analysis seems warranted in our case.
Let us now consider the fitting results. In Fig. 3(a),

we present as an example the data measured for σ =
46.0G0 together with the fitting curve. The parameters
α and τ/τφ = x in Eq. (3) have been used as the fitting
ones. The dephasing time has been estimated with the
use of the total conductivity and hole density, σ and p,
respectively, and average effective mass mav as follows:
τφ = τ/x, where τ = σmav/(e

2p), mav = (m1 + m2)/2
[see Fig. 1(d)]. The fitting magnetic field range is b =
(0 − 0.3). It is evident that Eq. (3) describes the MC
curve rather well.
It should be mentioned that the values of the fitting

parameters are somewhat sensitive to the width of the

fitting b-interval as Figures 3(b) and 3(c) illustrate. The
dephasing time τφ increases while the prefactor α slightly
decreases in magnitude with the expanding interval. This
can be partially attributed to the fact that the diffusion
regime, τ ≪ τφ, is not strictly satisfied under our exper-
imental conditions: τφ is only 10 − 30 times larger than
τ depending upon the conductivity and temperature. As
shown in Ref. 20 the values of the fitting parameters are
really dependent on the fitting interval if the diffusion
formula, Eq. (3), is used for description of the MC curve
beyond the diffusion regime. From the dashed curves in
Figs. 3(b) and 3(c) it is evident that these dependences
are quantitatively close to that observed experimentally.

Thus, the fitting value of the prefactor is close to −0.5
that corresponds to the case when transition time be-
tween the spin split subbands τ12 is less than τφ.

Now, let us inspect Fig. 4, in which the temperature
dependences of τφ and α are presented. It is seen that τφ
varies as 1/T , as it should be when the inelasticity of e-e
interaction is responsible for dephasing. But the prefac-
tor α changes with the temperature also. Such temper-
ature dependence of α is described quite well when one
takes into account the decrease of τφ/τ with the tem-
perature increase [see dashed curve in Fig. 4(b)], which
worsens applicability of the diffusion approximation.20

Thus, a sufficiently good agreement of the theoretical
MC curve with experimental one, the conventional be-
havior of the fitting parameter τφ with the temperature
and understandable behavior of α, all this together tes-
tifies the adequacy of the used model to find the value
of τφ. Such data treatment carried out within wide hole
density range shows analogous coincidence.

Let us now present the conductivity dependence of τφ.
The theory11 predicts that the value of τφ should increase
with the conductivity as σ/ lnσ, when the inelasticity of
e-e interaction is the main mechanism of the dephas-
ing. Such a prediction is justified in experiments on the
quantum wells with ordinary spectrum (see, e.g., Ref. 21,
where the data for GaAs/In0.2Ga0.8As/GaAs quantum
well are presented).

The experimental dependence τφ(σ) measured at T =
1.35 K is shown in Fig. 5(a). Firstly, we consider the
region where the conductivity is less than ≃ 100G0 [this
corresponds to the case when the distance between the
valence band top and Fermi level is less than (20 −
25) meV]. It is evident that τφ increases with the con-
ductivity within this conductivity range. Such a behavior
agrees rather well with the theoretical prediction.11 The
absolute values of τφ are also in satisfactory agreement
with the theoretical results obtained in Ref. 11 that is
clearly seen from Fig. 5, where the solid curves represents
the calculation results for two values of the parameter of
e-e interaction F σ

0 : F
σ
0 =0 and F σ

0 = −0.5.

Note that the second fitting parameter α decreases
in absolute value with the decreasing conductivity
[Fig. 5(b)]. Such a behavior is also natural and is in
reasonable agreement with the behavior of α in conven-
tional two-dimensional systems and with the theoretical
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dependence obtained with taken into account second loop
corrections: α(σ) = α(σ → ∞)(1 − 2G0/σ),

21 where
α(σ → ∞) = −1/2 for our case.

It is appropriate at this point to recall again that the
conductivity dependences of τφ found by the analogous
manner for electrons were different in the structures with
inverted (d > dc) and normal (d < dc) spectra.

7,8 It was
found in Ref. 8 that the dephasing time of electrons in-
creased with growing σ at d < dc. Figure 5(a) shows
that in the structures investigated in the present paper
[with d = (5.6 − 5.8) nm< dc] the dephasing time of the
holes behaves the same. This is different from that ob-

served for the electrons in the structures with the inverted
spectrum, where τφ was practically independent of σ for
whatever reason, which is as yet unknown.7 The interfer-
ence correction for holes with the inverted spectrum still
remains to be studied.
Thus, the interference quantum correction to the con-

ductivity in HgTe quantum well with normal spectrum,
d < dc, both for electrons and for holes, is analogous to
that in ordinary 2D systems. Namely, the magnetocon-
ductivity curves are well described by the conventional
expression Eq. (3). The temperature and conductivity
dependences of τφ found from the fit to Eq. (3) are more
or less close to the theoretical ones derived for the case
when inelasticity of e-e interaction is the main dephasing
mechanism.
Let us now consider the dephasing time at higher con-

ductivity (σ > 100G0) that corresponds to the hole den-
sity larger than 1×1011 cm−2 for the structure H724. It is
seen from Fig. 5(a) that the value of τφ decreases abruptly
with the conductivity increase. As Fig. 1(a) shows the
hole density 1 × 1011 cm−2 is close to though somewhat
less than the value at which the increase of the hole den-
sity begins to slow down with the increasing negative gate
voltage. This suggests that both these facts are of com-
mon origin. The analogous behavior of the conductivity
dependence of τφ is observed in the structure H1122 with
narrower quantum well d = 5.6 nm (see Fig. 5), in which
the change of slope in the pH vs Vg dependence occurs
at higher hole density, p ≃ 1.1 × 1011 cm−2. Since the
change in dpH/dVg at low Vg values is possibly caused by
the population of the secondary maxima in the valence
band spectrum [see Fig. 1(c)], it is reasonable to assume
that the appearance of the carriers in the secondary max-
ima leads to additional mechanism of the dephasing due
to inelasticity of e-e interaction of the holes in main max-
imum with these carriers.
Another possibility to explain the feature under dis-

cussion is existence of localized states in the lower barrier
which start to be occupied with the decreasing gate volt-
age leading to the same effect in the dependence p(Vg)
at p ≃ 1× 1011 cm−2. Inelasticity of the interaction with
carriers in these states may also result in the sharp de-
crease of τφ. We cannot exclude this mechanism at the
moment.

IV. CONCLUSION

The results of experimental study of the interference
quantum correction to the conductivity in the narrow
quantum well HgTe of the hole type with the normal
energy spectrum are presented. Analysis of the inter-
ference induced low-field magnetoconductivity has been
performed with taking into account the strong spin-
orbit splitting of the hole subband. We have shown
that the temperature dependence of the phase relax-
ation time found from the fit of the magnetoconductivity
curves is close to 1/T over the whole conductivity range
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σ = (5− 150)G0. Such a behavior is typical for the dirty
two-dimensional systems at low temperature when the
inelasticity of electron-electron interaction is the main
dephasing mechanism.

The conductivity dependence of the phase relaxation
times is nonmonotonic that may be consequence of non-
monotonic dispersion E(k) of the main hole subband
of spatial quantization. At relatively low conductiv-
ity (σ < 100G0 for the QW of 5.8 nm width), when
the Fermi level lies above the secondary maxima of the
dispersion, the dephasing time increases with the con-
ductivity increase analogously to that observed for elec-
trons in narrow HgTe quantum wells with the normal
energy spectrum8 and in ordinary single quantum wells.
Such a behavior is in agreement with that predicted
theoretically11 for the case when inelasticity of e-e in-
teraction is responsible for the phase relaxation. At the
same time, it differs markedly from the behavior of τφ ob-

tained in the HgTe quantum wells with d = (9− 10) nm
with the inverted energy spectrum, where τφ remains
nearly constant over the wide conductivity range.7 The
τφ decrease evident at higher conductivity σ > 100G0,
when the Fermi level is close or even arrives the secondary
maxima, may result from the additional channel of the
inelastic interaction between the carriers in the main and
secondary maxima.
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SUPPLEMENTAL MATERIAL

A. Applicability of the one-type-carrier

approximation to analysis of weak antilocalization

magnetoconductivity

1. Estimations of τ and Btr in subbands

The analysis of the SdH oscillations in the structures
investigated shows that the valence band is strongly split
by spin-orbit interaction so that the ratio of the hole
densities in the subbands is approximately equal to two.
That is why the parameters determining the weak local-
ization can be different as well. As follows from the main
paper in order to obtain the phase relaxation time it is
needed to known the transport relaxation times τi and

transport magnetic fields B
(i)
tr , where i = 1, 2 numbers

the spin split subband.

The τi and B
(i)
tr values can be estimated from anal-

ysis of the experimental magnetic field dependences of
ρxx and RH at classical magnetic field, µiB < 1, within
framework of the standard model of conductivity by two
types of carriers. Because there are additional mecha-
nisms of the magnetic field dependence of ρxx (e.g., the
quantum correction due to e-e interaction), we have an-
alyzed only the dependence RH(B). It has been fitted to
the classical textbook expression for the Hall coefficient1

using mobilities µ1 and µ2 as the fitting parameters, and
p1 and p2 which were found from the SdH oscillations [see
Fig. 1(a) in the main paper]. As an example we present
the results of such a fit for σ = 58.7G0 in Fig. S.1. All
the parameters used in and found from the fit are listed in
Table S.1. The transport relaxation times τi were found
as τi = µimi/e with m1 and m2 from Fig. 1(d) of the
main paper. The transport magnetic fields has been cal-

culated as B
(i)
tr = ~/(2el2i ) = π3

~pi/(2e)× (G0/σi)
2.

Although as seen from Fig. S.1 the fit quality is quite
good, the accuracy in determination of the fitting param-
eters is not very high. This is because the variation of
the Hall coefficient in the magnetic field is less than 1 %
and the experimental RH vs B traces are noisy on this
scale. For this concrete case, we estimate the error by
the value ±20%.

2. Estimation of errors at using one-band approximation

for analysis of WL MC

Let us estimate the error in determination of the τφ and
α values, which arises if one uses “one-band” expression

∆σ = αG0H

(

B

Btr

,
τ

τφ

)

(S.1)

to fit the data for the case of two strongly split spin
subbands.
We start with the case of slow transitions between spin

subbands (τ12 ≫ τ1, τ2). We have calculated the interfer-

0.0 0.2 0.4 0.6 0.8

0.98

1.00

fitting curve

 

R
H
(B

)/
R

H
(0

)

B (T)

experiment

Figure S.1. (Color online) The magnetic field dependence of
RH(B)/RH(0) for σ = 58.7G0. Structure H724. The solid
curves are the data, the dashed ones are the results of the
best fit with the parameters given in Table S.1.

Table S.1. The parameters of the different spin subbands for
σ = 58.7G0.

.

i = 1 i = 2

pi (10
10 cm−2)a 2.4 4.8

µi (104 cm2/V s)b 7.0 5.9

mi/m0 0.012 0.028

τi (10
−13 s) 4.8 9.4

B
(i)
tr (mT) 5.1 3.6

Btr (mT) 4.3

τφ (10−11 s) 2.0

τfit
φ (10−11 s) 2.17

αfit
−0.98

a Found from the SdH oscillations
b Obtained from the fit of RH vs B data.

ence correction to the conductivity using Eq. (2) from the
main paper with the parameters from Table S.1. There-

with, we have supposed τ
(1)
φ = τ

(2)
φ = τφ because the

dephasing time is determined by conductivity under con-
ditions that inelasticity of e-e collisions is responsible for
dephasing. Then the calculated ∆σ vs B curve has been
processed by the same way as experimental data, i.e.,
fitted to Eq. (S.1), in which Btr = π3

~p/e × (G0/σ)
2,

τ = σm/(e2p), where p stands for the total hole density
p1+p2, σ is the total conductivity, andm = (m1+m2)/2.
The parameters α and τφ have been used as the fitting
ones. It is evident from Fig. S.2 that Eq. (1) describes
the simulated dependence ∆σ(B) very well.
Since the accuracy in obtaining mobilities is not high

under our experimental conditions, it is useful to esti-
mate how strongly the fitting parameters τfitφ and αfit

depend on the µ1 to µ2 ratio. For this purpose we have
calculated the set of the magnetoconductivity curves
∆σ(B) with τφ = 2 × 10−10 s for the different µ1 to
µ2 ratio values while keeping n1 = 2.4 × 1010 cm−2,
n2 = 4.8× 1010 cm−2, and σ = 58.7G0. Note the change
of the Hall coefficient in the magnetic field ∆RH/RH =
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Figure S.2. (Color online) The magnetoconductivity plotted
as a function of b = B/Btr. The symbols are calculated from
Eq. (2) of the main paper, the curves are results of the best fit
by Eq. (S.1) within the b range from 0 to 0.3. The parameters
are given in Table S.1.
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Figure S.3. (Color online) The fitting parameters τfit
φ (a) and

αfit (b) plotted against the µ1 to µ2 ratio.

[RH(0)−RH(∞)]/RH(0) does not exceed 15 % therewith
[see the inset in Fig. S.3(a)]. Then, we have performed
the fitting procedure within the b range from 0 to 0.3.
The parameters τfitφ and αfit corresponding to the best

fit are presented in Figs. S.3(a) and S.3(b), respectively.
It is seen that the error in determination of τφ does not
exceed 30 %, while the µ1 to µ2 ratio varies within the
relatively wide interval: µ1/µ2 ≃ 1− 2. The value of αfit

remains always close to −1.
Let us now turn to the case of fast transitions between

subbands (τ12 ≪ τ1, τ2). In this regime the relationship
between the fitting and used values of τφ can be obtained
analytically because ∆σ(B) is given by Eq. (S.1) in which
α is equal to −1/2 exactly and τφ is replaced by some
effective value.2 Our analysis shows that the error in τφ
in this case does not exceed the value of 10 %.
Thus, we conclude that the use of Eq. (S.1) for descrip-

tion of the interference induced magnetoconductivity is
justified under our experimental conditions. Therewith,
the fitting procedure allows us to obtain not only the
value of the phase relaxation time but to estimate the

rate of intersubband transitions. If the value of αfit is
close to −1/2, so τ12 ≪ τφ. When αfit ≃ −1, τ12 ≫ τφ.
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Figure S.4. (Color online) The fitting parameters αfit (a) and
τ/τfit

φ (b) plotted against the width of magnetic field range,
in which the fit of the data presented in the inset in panel (a)
has been done. In the inset: symbols are obtained from the
numerical simulation with different values of γ = τ/τφ; the
curves are the results of the best fit by Eq. (S.1) within the
range b = (0− bmax), bmax = 0.3.

B. Workability of the diffusion formula beyond

diffusion regime

Equations (2) and (3) from the main paper, as well
Eq. (S.1), are valid in the diffusion regime, i.e., when
both of the two conditions B ≪ Btr and τφ ≫ τ are
satisfied. The calculation of WL MC beyond the diffu-
sion regime was carried out in a number of papers (e.g.,
in Refs. 3–7). However the expressions obtained are so
cumbersome that it is difficult to use them for the fit of
experimental curves. In order to estimate how well is the
fitting parameters obtained when Eq. (S.1) is used for the
description of the MC curve if the conditions of the dif-
fusion regime are satisfied not strictly, we have used the
numerical simulation approach developed in Ref. 9. The
“experimental” curves have been calculated with the use
of Eq. (21) from that paper. In order to take into account
the fast transitions between spin subbands, τ12 ≪ τφ, the
right-hand-side of this equation has been multiplied by
the factor −1/2 (for more details, see Ref. 8). The sim-
ulated data for different values of γ = τ/τφ and fitting
curves are presented in the inset in Fig. S.4(a). It is ev-
ident that the data are fitted by Eq. (3) perfectly. As
Figures S.4(a) and S.4(b) illustrate the values of the fit-
ting parameters α and τ/τφ are sensitive to the width of
magnetic field range (0 − bmax), in which the fit is per-
formed. However, inspection of Fig. S.4(b) shows that
the relative difference between the τ/τfitφ values and the

values τ/τφ used in the simulation procedure does not
exceed 10%, if one restricts the fitting interval by the
value bmax = 0.3.
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