
Computing Runs on a General Alphabet

Dmitry Kosolobov

Ural Federal University, Ekaterinburg, Russia

Abstract

We describe a RAM algorithm computing all runs (maximal repetitions) of a given string of length n over

a general ordered alphabet in O(n log
2
3 n) time and linear space. Our algorithm outperforms all known

solutions working in Θ(n log σ) time provided σ = nΩ(1), where σ is the alphabet size. We conjecture that
there exists a linear time RAM algorithm finding all runs.

Keywords: runs, general alphabet, maximal repetitions, linear time, repetitions

1. Introduction

Repetitions in strings are fundamental objects
in both stringology and combinatorics on words.
In some sense the notion of run, introduced by
Main [13], allows to grasp the whole repetitive
structure of a given string in a relatively simple
form. Informally, a run of a string is a maximal
periodic substring that is at least as long as twice
its minimal period (the precise definition follows).
In [9] Kolpakov and Kucherov showed that any
string of length n contains O(n) runs and proposed
an algorithm computing all runs in linear time on
an integer alphabet {0, 1, . . . , nO(1)} and O(n log σ)
time on a general ordered alphabet, where σ is the
number of distinct letters in the input string. Re-
cently, Bannai et al. described another interesting
algorithm computing all runs in O(n log σ) time [1].
Modifying the approach of [1], we prove the follow-
ing theorem.

Theorem. For a general ordered alphabet, there is
an algorithm that computes all runs in a string of

length n in O(n log
2
3 n) time and linear space.

This is in contrast to the result of Main and
Lorentz [14] who proved that any algorithm de-
ciding whether a string over a general unordered
alphabet has at least one run requires Ω(n log n)
comparisons in the worst case.

Our algorithm outperforms all known solutions
when the number of distinct letters in the input
string is sufficiently large (e.g., σ = nΩ(1)). It

should be noted that the algorithm of Kolpakov and
Kucherov can hardly be improved in a similar way
since it strongly relies on a structure (namely, the
Lempel–Ziv decomposition) that cannot be com-
puted in o(n log σ) time on a general ordered al-
phabet (see [11]).

Based on some theoretical observations of [11], we
conjecture that one can further improve our result.

Conjecture. For a general ordered alphabet, there
is a linear time algorithm computing all runs.

2. Preliminaries

A string of length n over an alphabet Σ is a map
{1, 2, . . . , n} 7→ Σ, where n is referred to as the
length of w, denoted by |w|. We write w[i] for the
ith letter of w and w[i..j] for w[i]w[i+1] . . . w[j].
A string u is a substring (or a factor) of w if
u = w[i..j] for some i and j. The pair (i, j) is
not necessarily unique; we say that i specifies an
occurrence of u in w. A string can have many oc-
currences in another string. A substring w[1..j] (re-
spectively, w[i..n]) is a prefix (respectively, suffix)
of w. An integer p is a period of w if 0 < p ≤ |w| and
w[i] = w[i+p] for all i = 1, . . . , |w|−p; p is the min-
imal period of w if p is the minimal positive integer
that is a period of w. For integers i and j, the set
{k ∈ Z : i ≤ k ≤ j} (possibly empty) is denoted by
[i..j]. Denote [i..j) = [i..j−1] and (i..j] = [i+1..j].

A run of a string w is a substring w[i..j] whose
period is at most half of the length of w[i..j] and
such that both substrings w[i−1..j] and w[i..j+1], if

Preprint submitted to Information Processing Letters September 15, 2018

ar
X

iv
:1

50
7.

01
23

1v
2

 [
cs

.D
S]

 2
2

N
ov

 2
01

5

defined, have strictly greater minimal periods than
w[i..j].

We say that an alphabet is general and ordered
if it is totally ordered and the only allowed opera-
tion is comparing two letters. Hereafter, w denotes
the input string of length n over a general ordered
alphabet.

In the longest common extension (LCE) prob-
lem one has to preprocess w for queries LCE (i, j)
returning for given positions i and j of w the length
of the longest common prefix of the suffixes w[i..n]
and w[j..n]. It is well known that one can perform
the LCE queries in constant time after preprocess-
ing w in O(n log σ) time, where σ is the number of
distinct letters in w (e.g., see [7]). It turns out that
the time consumed by the LCE queries is dominat-
ing in the algorithm of [1]; namely, one can prove
the following lemma.

Lemma 1 (see [1, Alg. 1 and Sect. 4.2]). Suppose
we can answer in an online fashion any sequence of
O(n) LCE queries on w in O(f(n)) time for some
function f(n); then we can find all runs of w in
O(n+ f(n)) time.

In what follows we describe an algorithm that

computes O(n) LCE queries in O(n log
2
3 n) time

and thus prove Theorem using Lemma 1. The key
notion in our construction is a difference cover. Let
k ∈ N. A set D ⊂ [0..k) is called a difference cover
of [0..k) if for any x ∈ [0..k), there exist y, z ∈
D such that y − z ≡ x (mod k). Clearly |D| ≥√
k. Conversely, for any k ∈ N, there is a difference

cover of [0..k) with O(
√
k) elements: for example,

the difference cover [0..b
√
kc]∪{2b

√
kc, 3b

√
kc, . . .},

which is depicted in Fig. 1. For further discussions
and estimations of minimal difference covers, see
[4, 15, 16].

k︷ ︸︸ ︷••••︸︷︷︸
b
√
kc

•◦◦◦︸︷︷︸
b
√
kc

•◦◦◦︸︷︷︸
b
√
kc

•◦◦◦︸︷︷︸
b
√
kc

•◦

Figure 1: Simple difference cover of [0..k) with k = 18.

Example. The set D = {1, 2, 4} is a difference
cover of [0..5).

x 0 1 2 3 4
y, z 1, 1 2, 1 1, 4 4, 1 1, 2

Our algorithm utilizes the following interesting
property of difference covers.

Lemma 2 (see [3]). Let D be a difference cover of
[0..k). For any integers i, j, there exists d ∈ [0..k)
such that (i+d) mod k ∈ D and (j+d) mod k ∈ D.

3. Longest Common Extensions

At the beginning, our algorithm fixes an integer
τ (the precise value of τ is given below). Let D
be a difference cover of [0..τ2) of size O(τ). De-
note M = {i ∈ [1..n] : (i mod τ2) ∈ D}. Obvi-
ously, we have |M | = O(nτ). Our algorithm builds
in O(nτ (τ2 + log n)) = O(nτ log n+ nτ) time a data
structure that can calculate LCE (x, y) in constant
time for any x, y ∈ M . To compute LCE (x, y) for
arbitrary x, y ∈ [1..n], we simply compare w[x..n]
and w[y..n] from left to right until we reach posi-
tions x + d and y + d such that x + d ∈ M and
y + d ∈ M , and then we obtain LCE (x, y) = d +
LCE (x+d, y+d) in constant time. By Lemma 2, we
have d < τ2 and therefore, the value LCE (x, y) can
be computed in O(τ2) time. Thus, our algorithm
can execute any sequence of O(n) LCE queries in

O(nτ log n + nτ2) time. Putting τ = dlog
1
3 ne, we

obtain O(nτ log n+nτ2) = O(n log
2
3 n). Now it suf-

fices to describe the data structure answering the
LCE queries on the positions from M .

Let i1, i2, . . . , im be the sequence of all
positions from M in the increasing lexico-
graphical order of the corresponding suffixes
w[i1..n], w[i2..n], . . . , w[im..n]. Our algorithm
builds a longest common prefix array lcp[1..m−1]
such that lcp[j] = LCE (ij , ij+1) for j ∈ [1..m) and
a sparse suffix array sa[1..n] such that isa[x] = x
for x ∈ M and sa[x] = 0 for x /∈ M . Obviously
LCE (ij , ik) = min{lcp[j], lcp[j+1], . . . , lcp[k−1]}
for j < k. Based on this observation, we
equip the lcp array with the range minimum
query (RMQ) structure [5] that allows to compute
min{lcp[j], lcp[j+1], . . . , lcp[k−1]} for any j < k in
O(1) time. Now, to answer LCE (x, y) for x, y ∈M ,
we first obtain j = sa[x] and k = sa[y] and then an-
swer LCE (ij , ik) using the RMQ structure on the
lcp array. Since the RMQ structure can be built in
O(n) time [5], it remains to describe how to con-
struct lcp and sa.

In general our construction is similar to that
of [10]. We use the fact that the set M has “period”
τ2, i.e., for any x ∈M , we have x+τ2 ∈M provided
x + τ2 ≤ n. For simplicity, assume that w[n] is a
special letter that is smaller than any other letter
in w. Our algorithm iteratively inserts the suffixes

2

{w[x..n] : x ∈ M} in the arrays lcp and sa from
right to left. Suppose, for some k ∈ M , we have
already inserted in lcp and sa the suffixes w[x..n]
for all x ∈ M ∩ (k..n]. More precisely, denote by
i′1, i

′
2, . . . , i

′
m′ the sequence of all positions M∩(k..n]

in the increasing lexicographical order of the corre-
sponding suffixes w[i′1..n], w[i′2..n], . . . , w[i′m′ ..n]; we
suppose that lcp[j] = LCE (i′j , i

′
j+1) for j ∈ [1..m′),

i′sa[x] = x for x ∈ M ∩ (k..n], and sa[x] = 0 for

x /∈ M ∩ (k..n]. We are to insert the suffix w[k..n]
in lcp and sa. In order to perform the insertions effi-
ciently, during the construction, the arrays lcp and
sa are represented by balanced search trees with
some auxiliary structures as described below.

1. Balanced search tree for lcp. The lcp array is
represented by an augmented balanced search tree
so that any RMQ query and modification on lcp
take O(log n) amortized time.

2. List L. We store all positions M ∩ (k..n] on
a linked list L in the lexicographical order of the
corresponding suffixes. We maintain on this list the
order maintenance data structure of [2] that allows
to determine whether a given node of L precedes
another node of L in constant time. The insertion
of a new node in L takes amortized constant time.
To provide constant time access to the nodes of L,
we maintain an array nds[1..n] such that nds[x] is
the node of L corresponding to position x if x ∈
M ∩ (k..n], and nds[x] = nil otherwise.

3. Balanced search tree for sa. It is straightforward
that, for any x ∈ (k..n], sa[x] is equal to one plus the
number of nodes of L preceding nds[x]. So, we store
all nodes of L in an augmented balanced search tree
allowing to calculate the number of nodes preceding
nds[x] in O(log n) time (since the comparison of two
nodes takes O(1) time). This tree together with the
list L and the array nds allows to compute sa[x] in
O(log n) time.

4. Trie S. We maintain a compacted trie S that
contains the strings w[x..x+τ2] for all x ∈M∩(k..n]
(we assume w[j] = w[n] for all j > n and thus
w[x..x+τ2] is always well defined). We maintain
on S the data structure of [6] supporting insertions
in O(τ2 + log n) amortized time. Let a be the leaf
of S corresponding to a string w[x..x+τ2]. We aug-
ment a with a balanced search tree Ba that contains
nodes nds[y] for all positions y ∈ M ∩ (k..n] such
that w[y−τ2..y] = w[x..x+τ2] (see Figure 2). We

use Ba to compute in O(log n) time the immediate
predecessor and successor of any given node nds[z],
where z ∈ M ∩ (k..n], in the set of nodes stored in
Ba. It is easy to see that S together with the asso-
ciated search trees occupies O(nτ) space in total.

Example. Let τ2 = 4. The set D = {0, 1, 3} is
a difference cover of [0..τ2). Consider the string
w = abcabcababcabb$; the underlined positions are
from M = {i ∈ [1..n] : (i mod τ2) ∈ D}. Figure 2
depicts the compacted trie S; each leaf of S is aug-
mented with a balanced search tree of certain posi-
tions from M ∩ (k..n] (we use positions rather than
nodes in this example). Consider the leaf of S cor-
responding to the string abcab. The string abcab
occurs at positions 4, 9, 1 in w. Hence, the bal-
anced search tree B4 must contain three positions:
4+τ2 = 8, 9+τ2 = 13, 1+τ2 = 5. Note that the
positions are stored in the lexicographical order of
the corresponding suffixes w[8..n], w[13..n], w[5..n].

Figure 2: The balanced search trees B1, B2, . . . , B9 are aug-
mented with some positions from M .

The construction of lcp and sa. To insert w[k..n]
in lcp and sa, we first insert w[k..k+τ2] in S in
O(τ2 + log n) time. If S did not contain the string
w[k..k+τ2] before, then, using auxiliary structures
on S, we easily find in O(1) time the position in
lcp where the suffix w[k..n] should be inserted; in
the same way we obtain the LCE value between
w[k..n] and its immediate predecessor and successor
in S. Then, we modify the balanced search tree
representing lcp, insert a new node corresponding
to w[k..n] in L, insert this node in the balanced
search tree supporting sa, and, finally, add a new
empty tree Ba to the newly created leaf a of S. All
these modifications take O(log n) amortized time.

Now suppose S contains w[k..k+τ2]. Denote by
a the leaf of S corresponding to w[k..k+τ2]. In
O(log n) time we obtain the immediate predecessor
and successor of the node nds[k+τ2] (recall that
k+τ2 ∈ M) in the search tree Ba; denote these
nodes by nds[x] and nds[y], respectively. (We as-
sume that the predecessor and successor both are

3

defined; the case when one of them is undefined
is analogous). Note that nds[x] is the immediate
predecessor only in the set of all nodes contained
in Ba but it may not be the immediate predeces-
sor in the whole list L; the situation with nds[y] is
similar. Then we insert nds[k+τ2] between nds[x]
and nds[y] in Ba. Since w[x−τ2..x] = w[y−τ2..y] =
w[k..k+τ2], it is straightforward that the suffixes
w[x−τ2..n] and w[y−τ2..n] are, respectively, the
immediate predecessor and successor of the suf-
fix w[k..n] in the set of all suffixes {w[x..n] : x ∈
M ∩ (k..n]}. Hence, we insert a new node nds[k]
in L between the nodes nds[x−τ2] and nds[y−τ2]
(these nodes are certainly adjacent).

It is easy to see that LCE (k, x−τ2) =
τ2 + LCE (k+τ2, x) and LCE (k, y−τ2) =
τ2 + LCE (k+τ2, y). The values LCE (k+τ2, x) =
LCE (i′sa[k+τ2], i

′
sa[x]) and LCE (k+τ2, y) =

LCE (i′sa[k+τ2], i
′
sa[y]) can be computed in O(log n)

time using the balanced search trees supporting ac-
cess on sa and RMQ queries on lcp. All subsequent
changes of other structures are the same as in the
previous case and require O(log n) amortized time.

Finally, once the last suffix is inserted, we con-
struct in an obvious way the plain arrays lcp and sa
in O(n) time.

Time and space. The insertion of a new suffix in
the arrays lcp and sa takes O(τ2 + log n) amortized
time. Thus, the construction of lcp and sa con-
sumes overall O(nτ (τ2 + log n)) time as required.
The whole data structure occupies O(n) space.

4. Conclusion

It seems that further improvements in the con-
sidered problem may be achieved by more efficient
longest common extension data structures on a gen-
eral ordered alphabet. One even might conjecture
that there is a data structure that can execute any
sequence of k LCE queries on a string of length n
over a general ordered alphabet in O(k + n) time.
However, we do not yet have a theoretical evidence
for such strong results.

Another interesting direction is a generalization
of our result for the case of online algorithms (e.g.,
see [8] and [12]).

Acknowledgements The author would like to
thank Gregory Kucherov for inviting in Université
Paris-Est, where the present result was obtained,

and the anonymous referee who simplified the proof
and highly improved the quality of the paper.

References

References

[1] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda,
K. Tsuruta, The “runs” theorem, arXiv preprint
arXiv:1406.0263v4.

[2] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-
Colton, J. Zito, Two simplified algorithms for main-
taining order in a list, in: Algorithms-ESA 2002, vol.
2461 of LNCS, Springer, 2002, pp. 152–164.

[3] S. Burkhardt, J. Kärkkäinen, Fast lightweight suffix ar-
ray construction and checking, in: CPM 2003, vol. 2676
of LNCS, Springer, 2003.

[4] C. J. Colbourn, A. C. H. Ling, Quorums from difference
covers, Information Processing Letters 75 (1) (2000) 9–
12.

[5] J. Fischer, V. Heun, Theoretical and practical improve-
ments on the rmq-problem, with applications to lca and
lce, in: CPM 2006, vol. 4009 of LNCS, Springer, 2006.

[6] G. Franceschini, R. Grossi, A general technique for
managing strings in comparison-driven data structures,
in: ICALP 2004, vol. 3142 of LNCS, Springer, 2004.

[7] D. Harel, R. E. Tarjan, Fast algorithms for finding near-
est common ancestors, SIAM Journal on Computing
13 (2) (1984) 338–355.

[8] J.-J. Hong, G.-H. Chen, Efficient on-line repetition de-
tection, Theoretical Computer Science 407 (1) (2008)
554–563.

[9] R. Kolpakov, G. Kucherov, Finding maximal repeti-
tions in a word in linear time, in: FOCS 1999, IEEE,
1999.

[10] D. Kosolobov, Faster lightweight Lempel–Ziv parsing,
in: MFCS 2015, vol. 9235 of LNCS, Springer-Verlag
Berlin Heidelberg, 2015.

[11] D. Kosolobov, Lempel-Ziv factorization may be harder
than computing all runs, in: STACS 2015, vol. 30 of
LIPIcs, Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2015.

[12] D. Kosolobov, Online detection of repetitions with
backtracking, in: CPM 2015, vol. 9133 of LNCS,
Springer, 2015.

[13] M. G. Main, Detecting leftmost maximal periodicities,
Discrete Applied Mathematics 25 (1) (1989) 145–153.

[14] M. G. Main, R. J. Lorentz, Linear time recognition
of squarefree strings, in: Combinatorial Algorithms on
Words, Springer, 1985, pp. 271–278.

[15] C. Mereghetti, B. Palano, The complexity of minimum
difference cover, J. of Discrete Algorithms 4 (2) (2006)
239–254.

[16] J. Singer, A theorem in finite projective geometry and
some applications to number theory, Transactions of
AMS 43 (3) (1938) 377–385.

4

	1 Introduction
	2 Preliminaries
	3 Longest Common Extensions
	4 Conclusion

