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Abstract. We present several series of synchronizing automata with
multiple parameters, generalizing previously known results. Let p and
q be two arbitrary co-prime positive integers, q > p. We describe reset
thresholds of the colorings of primitive digraphs with exactly one cycle
of length p and one cycle of length q. Also, we study reset thresholds of
the colorings of primitive digraphs with exactly one cycle of length q and
two cycles of length p.

1 Introduction

A complete deterministic finite automaton A , or simply automaton, is a triple
〈Q,Σ, δ〉, where Q is a finite set of states, Σ is a finite input alphabet, and
δ : Q × Σ 7→ Q is a totally defined transition function. Following standard
notation, by Σ∗ we mean the set of all finite words over the alphabet Σ, including
the empty word ε. The function δ naturally extends to the free monoid Σ∗; this
extension is still denoted by δ. Thus, via δ, every word w ∈ Σ∗ acts on the set
Q. For each v ∈ Σ∗ and each q ∈ Q we write q . v instead of δ(q, v) and let
Q . v = {q . v | q ∈ Q}.

An automaton A is called synchronizing, if there is a word w ∈ Σ∗ which
brings all states of the automaton A to a particular one, i.e. |Q .w| = 1. Any
such word w is said to be a reset (or synchronizing) word for the automaton A .
The minimum length of reset words for A is called the reset threshold of A .

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applied areas (robotics, coding theory). At the same
time, synchronizing automata surprisingly arise in some parts of pure mathemat-
ics (algebra, symbolic dynamics, combinatorics on words). See recent surveys by
Sandberg [10] and Volkov [13] for more details on the theory and applications of
synchronizing automata.

One of the most important and natural questions related to synchronizing
automata is the following: given n, how big can the reset threshold of an automa-
ton with n states be? In 1964 Černý exhibited a series of automata with n states
whose reset threshold equals (n − 1)2 [4]. Soon after he conjectured, that this
series represents the worst possible case, i.e. the reset threshold of every n-state
synchronizing automaton is at most (n−1)2. This hypothesis has become known
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as the Černý conjecture. In spite of its simple formulation and many researchers’
efforts, the Černý conjecture remains unresolved for about fifty years. Moreover,
no upper bound of magnitude O(n2) for the reset threshold of a synchronizing
n-state automaton is known so far. The best known upper bound on the reset

threshold of a synchronizing n-state automaton is the bound n3
−n
6 found by

Pin [8] in 1983.

In an attempt to understand why the Černý conjecture is so difficult to
resolve, researchers started to look for slowly synchronizing automata, i.e. au-
tomata with n states and reset threshold close to (n − 1)2. First series of such
automata were presented in [2]. The number of known series of slowly synchro-
nizing automata was significantly increased in [1]. In the latter paper the con-
structions are based on the observed connection between slowly synchronizing
automata and primitive digraphs with large exponent.

A digraph D is said to be primitive, if there is a positive integer t such that for
every pair of vertices u and v there is a path form u to v of length t. The smallest
t with this property is called the exponent of the digraph D. Equivalently, if M
is the adjacency matrix of D, then t is the smallest number such that M t is
positive. For additional results on the well-established field of primitive digraphs
we refer a reader to [3].

The underlying digraph D(A ) of an automaton A has Q as the set of vertices,
and (u, v) is an edge if u . x = v for some letter x ∈ Σ. A coloring of a digraph
D is an automaton A such that D(A ) is isomorphic to D. Proposition 2 [1]
states, that the reset threshold of an arbitrary n-state strongly connected syn-
chronizing automaton is greater than the exponent of the underlying digraph
minus n. At the same time, the Road Coloring theorem [12] states that any
primitive digraph has at least one synchronizing coloring. Thus, n-state slowly
synchronizing automata can be constructed from the well-known examples [5]
of primitive digraphs on n vertices with exponents close (n− 1)2. This idea was
presented and explored in [1]. In the present paper we generalize several series
of slowly synchronizing automata presented in [1]. Namely, Wn, D ′

n and D ′′

n .

Another motivation for the present paper comes from the following facts.
Computational experiments of Trahtman [11] revealed that not every positive
integer in {1, . . . , (n− 1)2} may serve as the reset threshold of some automaton
with n states over a binary alphabet. For example, there is no automaton with
nine states over a binary alphabet with the reset threshold in the range from 59
to 63. Similar gaps were found for automata with the number of states ranging
from 6 to 10. These results were confirmed in [1]. Moreover, a second gap was
presented, i.e. there are no 9-state automata over a binary alphabet with the
reset threshold from 53 to 55. For 10-state automata a third gap, along with the
first two, was found in the course of computational experiments of Kisielewicz
and Szyku la [6]. This brings up the following natural question: given n, which
positive integers are reset thresholds of n-state automata? Surprisingly, the set
En of all possible exponents of primitive digraphs on a fixed number n of vertices
has similar gaps [5] as the set Rn of all possible reset thresholds of n-state
automata. Furthermore, for every n the set En is fully described [3, p. 83].
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We hope that study of this similarity could shed light on properties of Rn. The
following statement [7] plays the key role in the description of En: if the exponent

of a primitive digraph D is at least (n−1)2+1
2 + 2, then D has cycles of exactly

two different lengths. This motivates our choice in the present paper to focus on
automata whose underlying digraphs have exactly two different cycle lengths.

Let p and q be two arbitrary co-prime positive integers, q > p. In section 2 we
describe reset thresholds of the colorings of primitive digraphs with exactly one
cycle of length p and one cycle of length q. In section 3 we study reset thresholds
of the colorings of primitive digraphs with exactly one cycle of length q and two
cycles of length p.

2 Wielandt-type automata

We start with recalling the following elementary and well-known number-theoretic
result.

Theorem 1 ( [9, Theorem 2.1.1]). Given two positive co-prime integers p and q,
the largest integer that is not expressible as a non-negative integer combination
of p and q, is (p− 1)(q − 1) − 1.

Let us fix two positive co-prime integers p and q. Without loss of generality,
we assume p < q. Let n be a positive integer, n < p+q. We define a Wielandt-type
automaton W (n, q, p) as follows (see Fig. 2). The state set Q = {0, 1, . . . , n− 1},
Σ = {a, b}, and the transitions are defined in the following way:
0 . a = q if n > q, and 0 . a = q − p + 1 if n = q; 0 . b = 1;
i . x = i + 1 for 1 ≤ i < n− 1 and i 6= q − 1 for each x ∈ Σ;
(q − 1) . x = 0 for each x ∈ Σ;
if n > q, then (n− 1) . x = n− p + 1 for each x ∈ Σ.

In case q = n, p = n− 1 we obtain Wielandt automaton Wn considered in [1]. It
is not hard to observe, that every strongly connected n-state automaton whose
underlying digraph has exactly one cycle of length p and exactly one cycle of
length q is isomorphic to W (n, q, p).

First let us consider the case n = q (see Fig. 1).

Lemma 1. Let A be a strongly connected synchronizing automaton, whose cy-
cles have lengths p and q. If gcd(p, q) = 1, then rt(A ) ≥ (p−1)(q−1). Moreover,
if there are states s, t, and a positive integer ℓ such that:
(i) there is a shortest synchronizing word w which resets the automaton A to s,
(ii) t . u = s for each word u of length ℓ,
then rt(A ) ≥ (p− 1)(q − 1) + ℓ.

Proof. Let A = 〈Q,Σ, δ〉. We prove the first part of the lemma. Consider a
synchronizing word w having shortest possible length. Let s = Q .w be the state
to which the automaton is synchronized. Note, that the word uw is synchronizing
for every u ∈ Σ∗, and Q .uw = s. In particular, we have s .w = s . uw = s. Thus
the word w, as well as the word uw, for every word u, labels a path in the
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Fig. 1. The Wielandt-type automaton W (q, q, p)

automaton A from the state s to itself. Every such path can be decomposed
into cycles of lengths p and q. Hence the number |w|, as well as |w| + k, for
each positive integer k, can be represented as a non-negative combination of the
numbers p and q. Thus, by theorem 1, we have rt(A ) ≥ (p− 1)(q − 1).

Assume now that in addition there exist a state t and a positive integer ℓ
such that t . u = s for each word u of length ℓ. Suppose, contrary to our claim,
that |w| < (p − 1)(q − 1) + ℓ. Let u ∈ Σ∗ be an arbitrary word such that
|uw| = (p−1)(q−1)+ ℓ−1. As before, the word uw synchronizes the automaton
A to the state s. But after applying its prefix of length ℓ to the state t we end
up in the state s. Hence there is a path of length (p − 1)(q − 1) − 1 from s to
itself. But this number can not be represented as a non-negative combination of
p and q by theorem 1. A contradiction.

Theorem 2. The reset threshold of the Wielandt-type automaton W (q, q, p)
equals (p− 1)(q − 1) + q − p.

Proof. Any shortest reset word w for this automaton resets it to the state q−p+1,
since it is the only state which is a common end of two different edges with the
same label. Note, that any word of length q − p brings the state 1 to the state
q − p + 1. Lemma 1 implies that the reset threshold of W (q, q, p) is at least
(p− 1)(q − 1) + q − p.

Let us check that the word w = aq−p(baq−1)p−2baq−p synchronizes W (q, q, p).
After applying the prefix aq−p we end up in the cycle C of length p:

Q . aq−p = {0, q − p + 1, q − p + 2, . . . , q − 1}.

Next, we show that that the word (baq−1)p−2 brings C to a two-element set. We
state this fact as a separate lemma:

Lemma 2. Let A be an automaton with the state set Q over the alphabet Σ =
{a, b}. Let q > p be two co-prime positive integers, and let r denote the remainder
of the division of q by p. Let C = {0, 1, . . . , p − 1} be a subset of Q such that
0 . a = 1, 0 . baq−1 = 0, and i . x ≡ i + 1 mod p for 1 ≤ i ≤ p − 1 and for all
x ∈ Σ. Then C .(baq−1)p−2 = {0, p− r}.
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Proof. First note, that i . baq−1 ≡ i + r mod p for each state i 6= 0. Consider the
equation i + rx ≡ 0 mod p. Since r and p are co-prime, this equation has unique
solution in {1, . . . , p − 1} for every i 6= 0. Then i .(baq−1)x = 0. If x 6= p − 1,
then i .(baq−1)p−2 = 0. The case x = p − 1 occurs only if i = r. In this case
r .(baq−1)p−2 = p− r.

Returning back to the proof of the theorem, we have C .(baq−1)p−2 = {0, q− r}.
The word baq−p brings the latter set to the singleton q − p + 1.

Let us consider now the general case of the Wielandt-type automaton W (n, q, p)
(see Fig. 2). It is rather easy to see, that given a synchronizing automaton

. . .

0

1 2

· · ·

q-1
n-p+1

· · ·

q

n-1 n-p

b

a, b

a, b

a, b

a, b

a a, b

a, b a, b

Fig. 2. The Wielandt-type automaton W (n, q, p)

B and a congruence ρ, the factor automaton B/ρ is also synchronizing, and
rt(B/ρ) ≤ rt(B). In particular, consider the following congruence σ on B: for
two states s and t we have sσt if and only if s . x = t . x for each x ∈ Σ.

Lemma 3. If B is synchronizing, then B/σ is also synchronizing, and

rt(B/σ) ≤ rt(B) ≤ rt(B/σ) + 1.

Proof. The inequality rt(B/ρ) ≤ rt(B) is trivial. The states of B/σ are congru-
ence classes [s]σ of the states s of the automaton B. Let us consider a synchro-
nizing word w for the automaton B/σ. For every pair of states s and s′ of the
original automaton B we have s . w σ s′ . w. But this means that s . wx = s′ . wx
for any letter x ∈ Σ, thus, the word wx resets the automaton B. Thus we have
rt(B) ≤ rt(B/σ) + 1.

Lemma 4. If n > q, then W (n, q, p)/σ is equal to W (n− 1, q, p), and

rt(W (n, q, p)) = rt(W (n− 1, q, p)) + 1.

Proof. Let w be a word of minimal length, synchronizing the automaton W (n, q, p).
As in the proof of theorem 2, the word w resets W (n, q, p) to the state n−p+1. On
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the last step w brings the states {n−1, n−p} to the state n−p+1. Hence w = w′x,
where x ∈ Σ, and w′ brings the automaton W (n, q, p) to the set {n−1, n−p}. But
these two states form the unique non-trivial σ-class (see Fig. 2). Thus the factor
automaton W (n, q, p)/σ is equal to the Wielandt-type automaton W (n−1, q, p).
Moreover, it is synchronized by w′. Thus, rt(W (n− 1, q, p)) ≤ rt(W (n, q, p))− 1.
On the other hand, by lemma 3 we have rt(W (n− 1, q, p)) ≥ rt(W (n, q, p)) − 1.
Therefore, we get the required equality.

Theorem 3. The reset threshold of the Wielandt-type automaton W (n, q, p) is
equal to (p− 1)(q − 1) + n− p.

Proof. Since there are n − q states on the path from the state 0 to n − p + 1,
lemma 4 can be applied n − q times to obtain the Wielandt-type automaton
W (q, q, p). By theorem 2, its reset threshold equals (p− 1)(q − 1) + q − p. Each
time lemma 4 is applied, the reset threshold is decreased strictly by 1. Thus the
reset threshold of the automaton W (n, q, p) is equal to (p− 1)(q − 1) + n− p.

3 Dulmage-Mendelsohn-type automata

As in the previous section, let q and p be two co-prime positive integers, and
q > p. Let k be a positive integer such that k < min{p, q−p+1}. Here we consider
Dulmage-Mendelsohn-type automata, which are the colorings of the following
primitive digraph D(q, p, k) (see Fig. 3). Its vertex set is {0, . . . , q−1}, the set of
edges is {(i, (i+1) modq) | 0 ≤ i < q}∪{(0, q−p+1), (k, (q−p+k+1) modq)}.
Note, that D(q, p, k) has exactly one cycle of length q and two cycles of length
p. The digraph D(q, p, k) has only two non-isomorphic colorings Daa(q, p, k) and
Dab(q, p, k) (see Fig. 4).

. . .

0

1 . . .

k

q-1 q-p+1

...

Fig. 3. Digraph D(q, p, k)

Lemma 5. (i) Any shortest synchronizing word of the automaton Dab(q, p, k)
synchronizes it to the state q − p + 1.

(ii) Any shortest synchronizing word of the automaton Daa(q, p, k) synchronizes
it to the state q − p + 1 when k < q − p.
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0

1 . . .
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a, b

a, b

a

a, ba, b

a b

Fig. 4. Two Dulmage-Mendelsohn-type automata D
aa(q, p, k) and D

ab(q, p, k)

Proof. Part (i). Let t = q − p + k + 1. Note, that t = k . b = (q − p + k) . a =
(q−p+k) . b. Any shortest synchronizing word w can synchronize the automaton
Dab(q, p, k) either to q− p+ 1 or t. Suppose, that w synchronizes Dab(q, p, k) to
the state t. By lemma 1 we have |w| ≥ (p−1)(q−1). Moreover, (p−1)(q−1) > k.
Consider the suffix v of w of length k. It is easy to see, that the full preimage
t . v−1 of the state t under the action of the word v is equal to {1, q − p + 1}. If
k = q− p, then the two incoming edges to the state q− p + 1 are labeled by the
letter a, while the only incoming edge to the state 1 is labeled by the letter b. A
contradiction. If k 6= q − p, then the set {1, q − p + 1} was necessarily obtained
from the set {0, q − p} by applying the letter b. But {0, q − p} . a = q − p + 1.
Therefore, we can replace the suffix of w of length k + 1 by the letter a, in
order to obtain a shorter synchronizing word. A contradiction. Hence the word
w synchronizes the automaton Dab(q, p, k) to the state q − p + 1.

The proof of the part (ii) of the lemma is analogous to the part (i) with only
minor changes.

Theorem 4. The reset threshold of the Dulmage-Mendelsohn-type automaton
Dab(q, p, k) is equal to (p− 1)(q − 1) + q − p− k.

Proof. Let w be a reset word for the automaton Dab(q, p, k) having minimal
length. By lemma 5 the word w synchronizes the automaton to the state q−p+1.
Note, that any word of length q−p−k brings the state k+1 to the state q−p+1.
Lemma 1 implies |w| ≥ (p− 1)(q − 1) + q − p− k.

First let us assume that k = q − p. In this case it remains to prove that
the word w1 = (baq−1)p−2baq−p is synchronizing. Let C be the cycle {0, q− p +
1, q−p+2, . . . , q−1}. Note, that the word baq−1 maps all the states, that do not
belong to C, to the set C.baq−1. Namely, k . baq−1 = (t−1) . baq−1, where t = k . b;
(k − 1) . baq−1 = (q − 1) . baq−1, (k − 2) . baq−1 = (q − 2) . baq−1, . . . , 1 . baq−1 =
(q − k + 1 = p + 1) . baq−1. Thus it is enough to consider the action of the
word w1 on the cycle C. By lemma 2 we have C .(baq−1)p−2 = {0, q− r}, where
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r is the remainder of the division of q by p. But then it is easy to see, that
0 . baq−p = (q − r) . baq−p = q − p + 1.

Now assume that k < q − p. Let us show that the word

w2 = baq−p−k−1(baq−1)p−2baq−p

is synchronizing. All the states in the range from k to q− p are mapped into the
cycle C under the action of the prefix baq−p−k−1. This prefix maps the remaining
states lying outside the cycle C, i.e. 1, 2, . . . , k − 1, to the states ranging from
q−p−k+1 to q−p−1. Namely, (k− i) . baq−p−k−1 = q−p− i for 1 ≤ i ≤ k−1.
The action of the word baq−1 on the states in {q − p − k + 1, . . . , q − p − 1}
coincides with the action of this word on some states in the cycle C. More
precisely, we have (q − p− i) . baq−1 = (q − i) . baq−1 for 1 ≤ i ≤ k − 1, provided
that for no such i we have q − p − i = k. If q − p − i = k for some i, then
we have k . baq−1 = (t − 1) . baq−1, where t = k . b. In both cases the condition
k < p implies that all the resulting states t − 1, q − 1, . . . , q − k + 1 lie on the
cycle C. Hence the word w2 brings the automaton Dab(q, p, k) into the subset
of C .(baq−1)p−2baq−p. As we have already seen, the latter set is the singleton
q − p + 1.

Theorem 5. The reset threshold of the Dulmage-Mendelsohn-type automaton
Daa(q, p, k) equals (p−1)(q−1)+q−p−k if k < q−p, and (p−1)(q−1)+2(q−p)
if k = q − p.

Proof. First let us assume that k < q−p. Let w be reset word for the automaton
Daa(q, p, k) having minimal possible length. Lemma 5 implies that the word w
brings the automaton to the state q − p + 1. Note, that any word of length
q− p− k brings the state k + 1 to the state q− p+ 1. Thus by lemma 1 we have
|w| ≥ (p− 1)(q − 1) + q − p− k.

Let us prove that the word w1 = aq−p−k(bak−1baq−k−1)p−2bak−1baq−p−k is
synchronizing. Consider the cycle C = {0, q − p + 1, q − p + 2, . . . , q − 1}. Note,
that the prefix aq−p−k maps the states, ranging from k+1 to q−p, to the states
in C. Consider now the action of the prefix aq−p−k on the states from 1 to k.
If q − p − k + 1 > k, then all these states are mapped to some states in C. If
q − p− k + 1 ≤ k, then these states are mapped into C ∪ {q − p− k + 1, . . . , k}.
Next, for each state t from q − p− k + 1 to k we present a state t′ from C such
that t . bak−1 = t′ . bak−1. If t 6= k, then it is easy to check that t′ = q − p + t.
Since q − p − k + 1 > 1, we have t′ > q − p + 1. Hence the state t′ ∈ C.
If t = k, then t′ = k + p (recall, that k + p < q). The state k + p belongs
to C. Indeed, from q − p − k + 1 ≤ k and k < p we obtain k + p > 2k ≥
q − p + 1. Hence the word w1 brings the automaton Daa(q, p, k) into the subset
of C .(bak−1baq−k−1)p−2bak−1baq−p−k. Thus it remains to show, that the latter
set is a singleton. The argument is similar to the proof of lemma 2. Instead of
the word baq−1 we use the word v = bak−1baq−k−1. First we note, that the word
v fixes the state 0. The word v moves all the other states in C except q−k along
the cycle in the same way as the word baq−1 does in lemma 2. The state q − k
leaves the cycle after applying the prefix bak−1b, but it can be easily seen that
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(q−k) . bak−1
baq−k−1 = (q−k) . bak−1

aaq−k−1. Thus we may treat the state q−k
as if it never left the cycle C. Following the argument in lemma 2, we conclude,
that C . vp−2 = {0, q − r}, where r is the remainder of the division of q by p.
Finally, we observe that 0 . bak−1baq−p−k = (q − r) . bak−1baq−p−k = q − p + 1.

Consider now the case k = q − p. Let w be a synchronizing word for the
automaton Daa(q, p, k) having minimal possible length. Since the incoming edges
to the state q − p + 1 have different labels, the word w necessarily resets the
automaton to the state q − p + 1 + k. For convenience, let t denote the state
q − p + 1 + k. Every word of length k brings the state q − p + 1 to the state
t. Therefore, by lemma 1 we have |w| ≥ (p − 1)(q − 1) + k. Suppose |w| =
(p − 1)(q − 1) + k + i for some 0 ≤ i ≤ k − 1. Consider the states q − i (the
state 0, if i = 0) and q− p− i. The prefix of w of length k + 1 + i will bring one
of these states to the state t depending on the (i + 1)st letter. The remaining
(p − 1)(q − 1) − 1 letters of w will move the state t to itself. But this path is
a combination of cycles of lengths p and q, which is impossible by theorem 1.
Consequently, |w| ≥ (p− 1)(q − 1) + 2k = (p− 1)(q − 1) + 2(q − p).

Let us prove that the word w2 = aq−p(bak−1baq−k−1)p−2bak−1baq−p is syn-
chronizing. The prefix aq−p brings all the states lying outside the cycle C =
{0, q−p+1, q−p+2, . . . , q−1} into C. Arguing as in the previous case we conclude,
that C .(bak−1baq−k−1)p−2 = {0, q − r}. It easy to see, that 0 . bak−1baq−p =
(q − r) . bak−1baq−p = t.

We can partially generalize this result as we did in theorem 3 for the case
of more than q states. We consider a primitive digraph Dλ(q, p, k) presented on
Fig. 5, where 1 ≤ λ < p. For convenience, we set D0(q, p, k) = D(q, p, k). Its
colorings are denoted by Daa

λ (q, p, k) and Dab
λ (q, p, k).

t

0

1 . . .

k

q-1 s

...

q

. . .

q+λ-1

q+λ

...

q+2λ-1

. . . . . .

Fig. 5. The digraph Dλ(q, p, k)
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Lemma 6. If 1 ≤ λ < p and z ∈ {a, b}, then Daz
λ (q, p, k)/σ is equal to Daz

λ−1(q, p, k),
and

rt(Daz
λ (q, p, k)) = rt(Daz

λ−1(q, p, k)) + 1.

Proof. Let w be a word synchronizing the automaton Daz
λ (q, p, k) having mini-

mal length. Then w resets the automaton either to the state s, or to the state
t. Let x be the last letter of w, so that w = w′x. The word w′ brings the au-
tomaton Daz

λ (q, p, k) either to the set {q + λ − 1, s− 1}, or {q + 2λ− 1, t− 1}.
These two pairs of states form the two non-trivial σ-classes. Hence the factor
automaton Daz

λ (q, p, k)/σ is equal to Daz
λ−1(q, p, k), and it is synchronized by w′.

Thus rt(Daz
λ (q, p, k)/σ) ≤ rt(Daz

λ (q, p, k))−1. On the other hand, by lemma 3 we
have rt(Daz

λ (q, p, k)/σ) ≥ rt(Daz
λ (q, p, k)) − 1, and we get the required equality.

Theorem 6. If 1 ≤ λ < p, then
(i) rt(Dab

λ (q, p, k)) = (p− 1)(q − 1) + q − p− k + λ;
(ii) rt(Daa

λ (q, p, k)) = (p− 1)(q − 1) + q − p− k + λ, if k < q − p;
(iii) rt(Daa

λ (q, p, k)) = (p− 1)(q − 1) + 2(q − p) + λ, if k = q − p.

Proof. Since there are λ states both on the path from the state 0 to s, and from k
to t, and k ≤ k−p, lemma 6 can be applied λ times. Each time lemma 6 is applied,
the reset threshold is decreased strictly by one. In the end, from the automaton
Dab

λ (q, p, k) we obtain the automaton Daa
0 (q, p, k), whose reset threshold is known

by theorem 4. Therefore, we have rt(Dab
λ (q, p, k)) = (p−1)(q−1)+ q−p−k+λ.

In an analogous way from the automaton Daa
λ (q, p, k) we obtain the automaton

Daa
0 (q, p, k). Applying theorem 5, we obtain rt(Daa

λ (q, p, k)) = (p − 1)(q − 1) +
q−p−k+λ in case k < q−p, and rt(Daa

λ (q, p, k)) = (p−1)(q−1)+2(q−p)+λ
if k = q − p.

The case of non-equal number of states on the paths from 0 to s and from k
to t is much more technical, and will be published elsewhere.
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