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Abstract

In this paper we study the property of separability of functional space C(X)
with the open-point and bi-point-open topologies. We show that it is consis-
tent with ZFC that there is a set of reals of cardinality the continuum such
that a set C(X) with the open-point topology isn’t a separable space. We
also show in a set model (the iterated perfect set model) that for every set
of reals X a set C(X) with bi-point-open topology is a separable space.
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1. Introduction

The space C(X) with the point-open topology (also known as the topol-
ogy of pointwise convergence) is denoted by Cp(X). It has a subbase con-
sisting of sets of the form

[x, V ]+ = {f ∈ C(X) : f(x) ∈ V },
where x ∈ X and V is an open subset of real line R. In paper [2] was

introduced two new topologies on C(X) that we call the open-point topology
and the bi-point-open topology. The open-point topology on C(X) has a
subbase consisting of sets of the form

[U, r]− = {f ∈ C(X) : f−1(r)
⋂
U 6= ∅},
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where U is an open subset of X and r ∈ R. The open-point topology
on C(X) is denoted by h and the space C(X) equipped with the open-point
topology h is denoted by Ch(X).

Now the bi-point-open topology on C(X) is the join of the point-open
topology p and the open-point topology h. It is the topology having subbase
open sets of both kind: [x, V ]+ and [U, r]−, where x ∈ X and V is an open
subset of R, while U is an open subset of X and r ∈ R. The bi-point-open
topology on the space C(X) is denoted by ph and the space C(X) equipped
with the bi-point-open topology ph is denoted by Cph(X). One can also view
the bi-point-open topology on C(X) as the weak topology on C(X) generated
by the identity maps id1 : C(X) 7→ Cp(X) and id2 : C(X) 7→ Ch(X).

In [2] and [1], the separation and countability properties of these two
topologies on C(X) have been studied.

In [2] the following statements were proved.

• Ch(P) is separable. (Proposition 5.1.)
• If Ch(X) is separable, then every open subset of X is uncountable.

(Theorem 5.2.)
• If X has a countable π-base consisting of nontrivial connected sets, then

Ch(X) is separable. (Theorem 5.5.)
• If Cph(X) is separable, then every open subset of X is uncountable.

(Theorem 5.8.)
• If X has a countable π-base consisting of nontrivial connected sets and

a coarser metrizable topology, then Cph(X) is separable. (Theorem 5.10.)

In the present paper, we will continue to study the separability of spaces
Ch(X) and Cph(X).

In this paper we use the following conventions. The symbols R, P, Q and
N denote the space of real numbers, irrational numbers, rational numbers
and natural numbers, respectively. Recall that a dispersion character ∆(X)
of X is the minimum of cardinalities of its nonempty open subsets.

By set of reals we mean a zero-dimensional, separable metrizable space
every non-empty open set which has the cardinality the continuum.

2. Main results

Note that if the space Ch(X) is a separable space then ∆(X) ≥ c. Really,
if A = {fi} is a countable dense set of Ch(X) then for each non-empty open
set U of X we have

⋃
fi(U) = R. It follows that |U | ≥ c.
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Also note that if the space Cph(X) is a separable space then Cp(X) is a
separable space and Ch(X) is a separable. It follows that X is a separable
submetrizable (coarser separable metric topology) space and ∆(X) = c.

Note also that if the space Ch(X) is a separable space then any point
x ∈ X isn’t P -point (point for which the family of neighbourhoods is closed
under countable intersections) of X .

Definition 2.1. Let X be a topological space. A set A ⊆ X will be called
I-set if there is a continuous function f ∈ C(X) such that f(A) contains an
interval I = [a, b] ⊂ R.

It is easily seen that in Definition the set I = [a, b] can be replaced by
C = 2ω or P = ωω.

It is known that there exists a subset B ⊂ R such that no uncountable
closed set of R is contained either B or R \ B. Such a subset B is called a
Bernstein set.

Marcin Kysiak (in personal correspondence) was seen following lemma.

Lemma 2.2. Let B be a Bernstein set and U be an non-empty open set in
B. Then U is I-set.

Proof. Let D ⊂ R \ B be a countable dense subset of the real line and let
{Un : n ∈ ω} be a countable topology base consisting of open intervals with
endpoints in D. For every n ∈ ω the set Un \D is homeomorphic to the Baire
space ωω, and hence it is homeomorphic to its Cartesian square ωω ×ωω; let
hn : (Un \D) → ωω×ωω be a homeomorphism. As every uncountable perfect
Polish space is a continuous image of ωω, let us fix a continuous mapping F
from ωω onto R. Let us define gn : (Un \D) → R as gn = F ◦ π1 ◦ hn, where
π1 : ω

ω × ωω → ωω is the projection on the first coordinate, i.e. π1(x, y) = x
for x, y ∈ ωω. As for every x ∈ ωω the set h−1

n [{x} × ωω] contains a perfect
set, we have B

⋂
h−1
n [{x}×ωω] 6= ∅ and consequently hn[B]

⋂
({x}×ωω) 6= ∅

so π1 ◦hn[B] = ωω, hence F ◦π1 ◦hn[B] = R. We have shown that gn[B] = R
for every n ∈ ω, where gn is a continuous function defined on an open interval
Un. As the endpoints of Un do not belong to B, the function (gn) ↾ B can
be easily extended to a continuous function f : B → R which is still onto
R by the property of gn. Let now U ⊂ R be a nonempty open set. As
{Un : n ∈ ω} was a topology base, there exists n ∈ ω such that Un ⊆ U .
Then f [U

⋂
B] = R.
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Theorem 2.3. Let X be a Tychonoff space and Ch(X) be a separable space.
Then X has a π-network consisting of I-sets.

Proof. Let set A = {fi} be a countable dense subset of Ch(X). Suppose,
contrary our claim, that there is non-empty open set U such that for any
f ∈ C(X) the set f(U) don’t contains interval of real line. Note that if for
every Cantor set C holds (R \ f1(U)) + C then f1(U) is Bernstein set.

By lemma 2.2, there is continuous function g ∈ C(f1(U)) such that
g(f1(U)) contains interval of real line. This contradicts our assumption. It
follow that there is Cantor set C1 such that f1(U)

⋂
C1 = ∅. For the set f2(U)

we have that there is Cantor set C2 such that C2 ⊆ C1 and f2(U)
⋂

C2 = ∅.
We can now proceed analogously to the fi(U) for each i > 2. As a result
of the induction, we obtain countable family of Cantor sets {Ci}i such that
Ci+1 ⊆ Ci for each i ∈ N. Choose r ∈

⋂
iCi we have fi /∈ [U, r]− for each

i ∈ R, which contradicts density of set A.

Theorem 2.4. Let X be a Tychonoff space with countable π-base, then the
following are equivalent.

1. Cph(X) is a separable space.

2. X is separable submetrizable space and it has a countable π-network
consisting of I-sets.

Proof. (1) ⇒ (2). The map id2 : Cph(X) 7→ Ch(X) is continuous map, hence
Ch(X) is separable space. By Theorem 2.3, the space X has a countable
π-network consisting of I-sets. The map id1 : Cph(X) 7→ Cp(X) is contin-
uous map, hence Cp(X) is separable space. It follow that X is a separable
submetrizable space.

(2) ⇒ (1). Let S = {Si} be a countable π-network of X consisting of I-
sets. By definition of I-sets, for each Si ∈ S there is the continuous function
hi ∈ C(X) such that hi(Si) contains an interval [ai, bi] of real line. Consider
a countable set

{hi,p,q(x) =
p−q

ai−bi
∗ hi(x) + p− p−q

ai−bi
∗ ai}

of continuous functions on X , where i ∈ N, p, q ∈ Q. Let β = {Bj} be
countable base of (X, τ1) where τ1 is separable metraizable topology on X
because of X is separable submetrizable space. For each pair (Bj , Bk) such
that Bj ⊆ Bk define continuous functions
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hi,p,q,j,k(x) =

{
hi,p,q(x) for x ∈ Bj

0 for x ∈ X \Bk.

and for each v ∈ Q

dj,k,v(x) =

{
v for x ∈ Bj

0 for x ∈ X \Bk.

Let G be the set of finite sum of functions hi,p,q,j,k and dj,k,v where i, j, k ∈
N and p, q, v ∈ Q. We claim that the countable set G is dense set of Cph(X).

By proposition 2.2 in [2], let
W = [x1, V1]

+
⋂

...
⋂
[xm, Vm]

+
⋂
[U1, r1]

−
⋂

...
⋂
[Un, rn]

− be a base set of
Cph(X) where n,m ∈ N, xi ∈ X , Vi is open set of R for i ∈ 1, m, Uj is open
set of X and rj ∈ R for j ∈ 1, n and for i 6= j, xi 6= xj and Ui

⋂
Uj = ∅.

Fix points yj ∈ Uj for j = 1, n and choose Bsl ∈ β for l = 1, n+m
such that Bsl1

⋂
Bsl2

= ∅ for l1 6= l2 and l1, l2 ∈ 1, n+m and xi ∈ Bsl for

l ∈ 1, m and yj ∈ Bsl for l ∈ m+ 1, n. Choose Bs′
l
∈ β for l ∈ 1, m such that

xi ∈ Bs′
l
and Bs′

l
⊆ Bsl and choose Bs′

l
∈ β for l ∈ m+ 1, n+m such that

yj ∈ Bs′
l
⊆ Bsl where l = j +m.

Fix points vi ∈ (Vi

⋂
Q) for i ∈ 1, m and pj , qj ∈ Q such that pj < rj < qj

for j = 1, n.
Consider g ∈ G such that
g = ds′

1
,s1,v1 + ... + ds′m,sm,vm + hi1,p1,q1,s

′

m+1
,sm+1

+ ... + hin,pn,qn,s
′

m+n,sn+m

where Sik ⊂ Bs′
l

⋂
Uk for k = 1, n and l = k +m.

Note that g ∈ W . This proves theorem.

Corollary 2.5. Let X be a Tychonoff space with countable π-base, then the
following are equivalent.

1. Ch(X) is a separable space.

2. X has a countable π-network consisting of I-sets.

Corollary 2.6. If X is a separable metrizable space, then the following are
equivalent.

1. Cph(X) is a separable space.

2. X has a countable π-network consisting of I-sets.
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Theorem 2.7. If X is a Tychonoff space with network consisting non-trivial
connected sets, then the following are equivalent.

1. Cph(X) is a separable space.

2. X is a separable submetrizable space.

Proof. (1) ⇒ (2). The map id1 : Cph(X) 7→ Cp(X) is a continuous map,
hence Cp(X) is a separable space. It follow that X is a separable submetriz-
able space.

(2) ⇒ (1). Let X be a separable submetrizable space, i.e. X has coarser
separable metric topology τ1 and γ be network of X consisting non-trivial
connected sets. Let β = {Bi} be a countable base of (X, τ1). We can assume
that β closed under finite union of its elements.

For each finite family {Bsi}
d
i=1 ⊂ β such that Bsi

⋂
Bsj = ∅ for i 6= j

and i, j ∈ 1, d and {pi}
d
i=1 ⊂ Q we fix f = fs1,...,sd,p1...,pd ∈ C(X) such that

f(Bsi) = pi for each i = 1, d.
Let G be the set of functions fs1,...,sd,p1...,pd where si ∈ N and pi ∈ Q for

i ∈ N. We claim that the countable set G is dense set of Cph(X).
By proposition 2.2 in [2], let
W = [x1, V1]

+
⋂

...
⋂
[xm, Vm]

+
⋂
[U1, r1]

−
⋂

...
⋂
[Un, rn]

− be a base set of
Cph(X) where n,m ∈ N, xi ∈ X , Vi is open set of R for i ∈ 1, m, Uj is open
set of X and rj ∈ R for j ∈ 1, n and for i 6= j, xi 6= xj and Ui

⋂
Uj = ∅.

Choose Bsl ∈ β for l = 1, n+m such that Bsl1

⋂
Bsl2

= ∅ for l1 6= l2
and l1, l2 ∈ 1, n+m and xi ∈ Bsl for l ∈ 1, m and Bsl

⋂
Uk 6= ∅ for l ∈

m+ 1, n+m and k = l−m. Choose Bs′
l
∈ β for l ∈ 1, m such that xi ∈ Bs′

l

and Bs′
l
⊆ Bsl and choose Ak ∈ γ for k ∈ 1, m such that Ak ⊆ (Ul

⋂
Bsl)

where l = k +m.
Choose different points sk, tk ∈ Ak for every k = 1, m. Let S, T ∈ β such

that S
⋂
T = ∅, Bl

⋂
S = ∅, Bl

⋂
T = ∅ for l ∈ 1, m and sk ∈ S and tk ∈ T

for all k = 1, m.
Fix points vi ∈ (Vi

⋂
Q) for i ∈ 1, m.

Choose p, q ∈ Q such that p < min{ri : i = 1, n} and q > max{ri : i =
1, n}.

Let

f(x) =





p for x ∈ S
q for x ∈ T

vl for x ∈ Bs′
l

where l ∈ 1, m.
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Note that f ∈ W . This proves theorem.

Theorem 2.8. If X is a locally connected space without isolated points, then
the following are equivalent.

1. Cph(X) is a separable space.

2. X is a separable submetrizable space.

Definition 2.9. Let (X, τ) be a topological space. Define a cardinal function
ξ(X) = min{|γ| : for every finite family of pairwise disjoint nonempty open
subsets {Vi}

k
i=1 of X there is family of pairwise disjoint nonempty zero-sets

γ′ = {Zi}
k
i=1 ⊆ γ such that Vi

⋂
Zi 6= ∅ for i = 1, k}.

Obviously, that ξ(X) ≤ πw(X).

Theorem 2.10. If X is a locally connected space without isolated points,
then the following are equivalent.

1. Ch(X) is a separable space.

2. ξ(X) = ℵ0.

Proof. (1) ⇒ (2). Let A = {fi} be a countable dense set of Ch(X) and
β = {Bj} be a countable base of R. Define a family γ = {f−1

i (Bj) : i, j ∈ N}.
Let {Vs}

k
s=1 be a finite family of pairwise disjoint nonempty open subsets

of X . Consider an open base set W = [V1, 1]
−
⋂

...
⋂
[Vk, k]

−. Then there are
fi′ ∈ A

⋂
W and the family {Bjs : s ∈ Bjs for s ∈ 1, k and Bj′s

⋂
Bj

′′

s
= ∅ for

s′ 6= s
′′

and s′, s
′′

∈ 1, k} such that γ′ = {f−1

i′ (Bjs)}
k
s=1 required the subfamily

of γ.
(2) ⇒ (1). Let γ = {Fi} be family of zero-sets from definition of ξ(X)

such that |γ| = ξ(X) = ℵ0. We can assume that γ closed under finite union
of its elements. Consider countable set of continuous functions

A = {fi,j,p,q ∈ C(X) : fi,j,p,q(Fi) = p and fi,j,p,q(Fj) = q for Fi, Fj ∈ γ
such that Fi

⋂
Fj = ∅ and p, q ∈ Q}.

Let W = [U1, r1]
−
⋂

...
⋂
[Un, rn]

− be a base set of Ch(X) where n ∈ N,
Uj is open set of X and rj ∈ R for j ∈ 1, n and for i 6= j, Ui

⋂
Uj = ∅.

Fix connected open sets Sαi
such that Sαi

⊂ Ui for i = 1, n. Since
Sαi

is not-trivial set there are different points ai, bi ∈ Si for i = 1, n. Let
{Oi}

n
i=1 and {Oi}ni=1 be families of pairwise disjoint nonempty open subsets

of X such that ai ∈ Oi, bi ∈ Oi and (
⋃n

i=1
Oi)

⋂
(
⋃n

i=1
Oi) = ∅. There are
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family of pairwise disjoint nonempty zero-set sets γ′ = {Fk}
2n
k=1

⊂ γ such
that Fk

⋂
Oi 6= ∅ for k = i and Fk

⋂
Oi 6= ∅ for k = i+ n. Let H1 =

⋃n

k=1
Fk

and H2 =
⋃

2n

k=n+1
Fk, then consider f = fi′,j′,p,q ∈ A such that f(F ′

i ) = p and
f(F ′

j) = q where F ′

i = H1, F
′

j = H2 for some i′, j′ ∈ N and p, q ∈ Q such that

p < min{ri : i = 1, n} and q > max{ri : i = 1, n}. Note that f ∈ W . This
proves theorem.

3. Consistent counter examples

Recall that a set of reals X is null if for each positive ǫ there exists a
cover {In}n∈N of X such that

∑
n diam(In) < ǫ. A set of reals X has strong

measure zero if, for each sequence {ǫn}n∈N of positive reals, there exists a
cover {In}n∈N of X such that diam(In) < ǫn for all n. For example, every
Lusin set has strong measure zero.

Example 3.1. (CH) Let X be a set of reals and it has strong measure zero.
Consider a space Ch(X). Note that the property has strong measure zero is
invariant with respect to continuous mappings [3]. Let A = {fi}i ⊂ C(X)
be a countable set of continuous functions and Xi = X for each i ∈ N.
Direct sum Y =

⊕
i Xi has strong measure zero. Hence a set F (Y ) ⊂ R has

strong measure zero where F is a continuous real-valued function on Y . So
if F ↾ Xi = fi we have that

⋃
i fi(X) 6= R. It follows that Ch(X) ( a fortiori

Cph(X) ) isn’t a separable space.

In [4] was shown that it is consistent with ZFC that for any set of reals of
cardinality the continuum, there is a (uniformly) continuous map from that
set onto the closed unit interval. In fact, this holds in the iterated perfect
set model.

Theorem 3.2. ( the iterated perfect set model)
If X is a separable metrizable space, then the following are equivalent.

1. Cph(X) is a separable space.

2. ∆(X) = c.

Proof. (2) ⇒ (1). Note that in the iterated perfect set model every nonempty
open set of X is a I-set. Really, suppose that U is a nonempty open set of
X , but it isn’t a I-set. Then U is a set of reals of cardinality the continuum.
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Note that for each point x ∈ U there exist continuous function f : X → I
such that f−1(0) ⊇ X \ U and f−1(1) ∋ x. Clearly, that there is r ∈ I such
that r /∈ f(U). It follows that f−1([r, 1]) is clopen neighborhood of x and
U is a zero-dimensional subspace of X . Let W be an open set such that
W ⊂ U . Then W is a set of reals of cardinality the continuum. By the
iterated perfect set model there exist continuous function h from W onto the
closed unit interval I. Therefore, from Tietze-Urysohn Extension Theorem,
there is a continuous function F : X → R such that F ↾ W = h and
F (U) ⊇ I. This contradicts our assumption.

By Theorem 2.6, Cph(X) is a separable space.

4. Remarks

Now we state two results of [1] that give for the density of the spaces
Ch(X) and Cph(X).

1.([1], Theorem 4.21) If X is a locally connected space with no isolated
points, then d(Ch(X)) = πw(X).

2.([1], Theorem 4.22) If X is a locally connected space with no isolated
points, then d(Cph(X)) = πw(X) · iw(X).

We note that these results are false (equality can not be !), but in these
results meaning an upper bound for the density of the spaces Ch(X) and
Cph(X).

Theorem 4.1. If X is a locally connected space with no isolated points, then
d(Ch(X)) ≤ πw(X).

Theorem 4.2. If X is a locally connected space with no isolated points, then
d(Cph(X)) ≤ πw(X) · iw(X).

Now we give an example where there is no equality.

Example 4.3. Let X = ⊕α<cRα be a direct sum of real lines R. Then X is
a separable submetrizable space i.e. iw(X) = ℵ0. Clearly, that πw(X) = c.
By Theorem 2.8, Cph(X) is separable, and, hence, Ch(X) is separable.

Proposition 4.4. If Ch(X) is a separable space, then Ch(βX) is a separable
space.

9



Proof. Note that Ch(X) is homeomorphic to Ch(X, (0, 1)). Let A = {fi} be a

countable dense set of Ch(X, (0, 1)). Then set {f̃i} is countable dense subset

of Ch(βX, (0, 1)) where f̃i ↾ X = fi. Really let W = [U1, r1]
−
⋂

...
⋂
[Un, rn]

−

be a base set of Ch(βX) where n ∈ N, Uj is open set of βX and rj ∈ R for
j ∈ 1, n and for i 6= j, Ui

⋂
Uj = ∅. Clearly that V = [V1, r1]

−
⋂

...
⋂
[Vn, rn]

−

be a open set of Ch(X) where n ∈ N, Vj = X
⋂

Uj is open set of X and
rj ∈ R for j ∈ 1, n and for i 6= j, Vi

⋂
Vj = ∅. There is f ′

i ∈ A
⋂

V and it

follows that f̃ ′

i ∈ W .

Example 4.5. Let X = R. By Theorem 2.6, Cph(X) is a separable space, but
Cph(βX) is not a separable space because βX is not a separably submetrizable
space.
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