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Abstract. We prove that a random word of lengttover ak-ary fixed alphabet contains, on expecta-
tion, ©(y/n) distinct palindromic factors. We study this number of fast&(n, k), in detail, show-
ing that the limitlim,,_, ., E(n, k)/+/n does not exist for any > 2, liminf, . E(n,k)/\/n =
O(1), andlimsup,,_, . E(n,k)/v/n = ©(Vk). Such a complicated behaviour stems from the
asymmetry between the palindromes of even and odd lengthsh&e that a similar, but much
simpler, result on the expected number of squares in randordsaholds. We also provide some
experimental data on the number of palindromic factorsiirdcan words.

1. Introduction

Palindromes are among the most important and activelyeugipetitions in words. Recall that a word
w = aj---ay iS a palindrome ifa; ---a, = a,---ay. In particular, all letters are palindromes; the
empty word is also considered as a palindrome, but through@paper we do not count it. Palindromes
are objects of intensive study since 1970s. One directiahisfstudy is formed by different counting
problems; see, for examplé,| [9], where the asymptotic dravftthe language opalstars(words that
are concatenations of even-length palindromes) is founa.infportant group of problems within this
direction concerns the possible number of distinct patindc factors, or subpalindromes, in a word.
We call this numbepalindromic richness

Clearly, for the words containing different letters the lower bound for their palindromichmess is
k. If k > 2, then this bound is sharp, since the infinite periodic wWaird - - a;)*, whereay, . . ., a; are
different letters, has no subpalindromes except lettessk = 2 the lower bound is less straightforward:
the minimum richness of an infinite word is 8 and the minimualmmess of amperiodicinfinite word
is 10 [2]. (Moreover, the minimum richness of a finite word efdgth> 9 is 8.) On the other hand, the
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maximum richness of an-letter word over any alphabet ig as was first observed inl[1]. Such “rich”
words are objects of intensive study (see, €.9., [3]).,Stille is known about the number of rich words
of a given length. Currently, the best lower bound on the rema$ binary rich words is of the form

%, wherep(n) is a polynomial and” ~ 37 [7]. In the same paper, it was conjectured that this number

is upper bounded by V™, while the best proved upper bound is of orde#05™. Anyway, most of the
words are not rich, and it is quite interesting to see how #lm@romic richness behaves in the generic
case. We will show, in a straightforward way, that any ridmieetween the two extremums is reachable:

Proposition 1.1. Any number between 8 andin the binary case, and betwekandn in the k-ary case
with k£ > 2 is the palindromic richness of some word of length

So, the following question is quite natural:
what is the expected palindromic richness of a random wotdrajthn?

The following theorem, which is our main result, providesegailed answer to this question. Note that
the bigger is the alphabet, the less probable is that a ramdmeh will be a palindrome; so, statements 3
and 4 of this theorem seem rather unexpected.

Theorem 1.1. Letk > 2.
(1) The expected palindromic richnesgr, k) of a randomk-ary word of lengthn is ©(y/n) asn — oo

with & fixed.
(2) The ratio% has no limit as» — oo with & fixed.
(3) The functionC(k) = lim inf,_,c %% is ©(1) ask — oo.
vn
(4) The functionC'(k) = lim sup ECub) s ©(vE) ask — .
n—oo \/ﬁ

We also give more precise theoretical estimation of the tjiesiC (k) andC (k) for some alphabets
and compare them to the results of our experiments. Finaéyshow that our technique allows one to
get, in a much easier way, the bou@d,/n) on the number oéquaresn a random word.

The text is organized as follows. Section 2 contains natatiefinitions, and the proof of Proposi-
tion[1.1. In Sections 3-5 we prove Theorem 1.1. In Sect. 3, nweepthe upper boun@(y/n) and find
the range of lengths, containing the main part of all distpalindromic factors. Then in Sect. 4-5 we
study the probability of getting a palindromic factor of aeg length from a prescribed range, using the
results of Guibas and Odlyzkal [5, 6] on factor avoidance. fitred Sect. 6 is devoted to numerical studies
and to extending our methods to counting the expected nuailsguares instead of palindromes.

2. Preéiminaries

We study non-empty words over finite alphabets, using theyarotationw = w|1..n] when appropriate
and writing|w| for the length ofw. Any wordw]i..j], wherel < i < j < n, is afactor of w; a factor of
the formw|1..5] (resp.,wli..n]) is called aprefix (resp., asuffiy of w. A squareis any word of the form
ww. By u* we denote the right-infinite word obtained by concatenaioan infinite sequence of copies
of the wordu.
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A word satisfyingw[i] = w[n—i] for all i = 1,...,n, is a palindrome Palindromic richnes®f a
word w is the humber of distinct palindromes which are factors of

By a random k-ary word of lengthn we mean the random variable equidistributed among:-all
ary words of lengthn. The expectedpalindromic richnes€(n, k) of this random word is the main
characteristic studied in this paper.

Throughout the paper, the notatitrg always stands for the bagdogarithm; the natural logarithm
is denoted byn.

Proof of Proposition [1.1

Letk > 2 andw = (ay - - - ax)“. The worda} *w[1..n—1+k] of lengthn has exactly palindromes: all
letters plus the palindromes for i = 2,...,1—k+1. Sincel can be an arbitrary integer betweemand
n, we are done with this case.

Now consider the binary alphabgi, 1}. The infinite wordu = (001101)“ has exactly 8 palindromic
factors:0, 1,00, 11,010, 101,0110, 1001. All of them appear in:[1..9]. Then the word\—3u[1..n—1+8]
of lengthn has exactly palindromes for any = k,...,n — 1: those ofu plus03,...,0'~%. Since the
words of lengthn and richness exist (for exampleQ™), we get the desired result.

3. A simple upper bound
The aim of this section is to prove thBfn, k) = O(y/n) for any fixedk and to show that the most

part of palindromic factors in a word of lengthhas the length close fog n. The first two lemmas are
straightforward.

Lemma3.1. The number of distinck-ary palindromes of length: is Pal(k, m) = kl™/?1,

Proof:
The mentioned quantity is the number of ways to choose the|fiig2] letters of a word of lengthn.
If this word is a palindrome, the remaining letters are dateed uniquely. O

Lemma3.2. The expected number of palindromic factbos lengthm in a k-ary word of lengthn is

E(n,k,m) = ’Z_LT%

Proof:

The probability for &-ary word of lengthm to be a palindrome ié‘% = ﬁ by Lemmd3.1L. This
probability obviously coincides with the expected numbigsadindromic factors of lengttn in the fixed
position of a word of lengtlm. Now the lemma follows by the linearity of expectation, bhesma word
of lengthn hasn—m-+-1 factors of lengthn. O

The following combinatorial lemma is used in the proof of Lranai3.4.

Lemma33. > 0, 2;1 — %

!Not necessarily distinct!
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Proof:
The following sequence of transformations holds:

oo , o\ ety

S G+ 1t = ( S x> - <1_w>

i=c i=c+1
(e+ Dzl —z)+ 2t (e+1)ac — cat!
- (1—x)? - (-

c+ 1)k —c
o= /K] = 7];_4[(;_ o

O

In the rest of this section we prove the following upper boondhe expected palindromic richness.
Some notions and formulas from the proof will be then usedufjhout the rest of the paper.

Lemma3.4. For any fixedk > 2 one has(n, k) < /n(vVk + O(1)).

Proof:

Let w be a word picked up uniformly at random from the set oftaliry words of length. It is clear
that the expected numbelw, m) of distinct palindromic factors of lengttn in w can exceed neither
Pal(k, m) norE(n, k,m). So we have the following upper bound:

E(n,k) < Y min{Pal(k,m),E(n, k,m)}. (1)
m=0

Since the formulas given in Lemmas13.1 3.2 are asymmwitficrespect to the parity ofq, it is
convenient to split the sum ihl(1) into two sums, correspogdd even and odd values of, respectively,
and compute them separately. So we have

. n—2m+1

Pal(k,2m) = k™, E(n,k,2m) = o , (2a)
Pal(k, 2m+1) = K™, E(n, k, 2m+1) = " ;jm (2b)
and then we can write
E(”» k) = Ee(nv k) + EO(”» k)
[n/2] R L(n—1)/2] X
< ) min{Pal(k,2m), E(n, k,2m)} + > min{Pal(k, 2m+1),E(n, k,2m+1)}. (3)
m=0 m=0

The graphs of_(Z2a) an@ (Rb) as functionsmeffor &k andn fixed) are drawn in Fid.l1.

So, in each case we have to find the point of intersection ofgraphs and then sum up all values
of Pal to the left of this point and all values &f to the right of this point. We start with even-length
palindromes. Recall thaddg denotes the bagelogarithm.
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Figure 1. The graphs dfal andE for even-length (left) and odd-length (right) palindromes

logn

The intersection poinb. = p.(n, k) is given by the equatio&®™ = n — 2m + 1, SOp, ~ 5.
Using standard transformations and the Maclaurin serielfé — =), we get a more precise estimate:

_log(n —2p. +1)  log(n —log(n — 2p. + 1) + 1)

Pe 5 B
1 log(n —2pe +1) — 1 logn  log(n —2p.+1)—1 log®n
=—-(1 log (1 — = -
2 <ogn+0g< n >> 2 (2Ink)-n +O< n? )
_logn  logn —1 log? n
T2 (2Ink)-n ( n? ) “)
Replacing geometric sequences by geometric series angiragphlemmd 3.8, we obtain
[Pe [n/2] oo
n—2m+1 kLpe] n+1 2 m+1
< m < —_Z. - -
Eeln, k) < Z L Z km —1-1/k + klpelt1(1 —1/k) &k Z km
m=0 m=|pe|+1 m=|pe|
_kLPeJ+1+ n+1  2(lpe) + Dk —2|pe] 5)
k=1 klrel(k —1) klpel(k —1)2
Using (4) and the Maclaurin series for the exponential fiamgtwe compute
_logn—1 4 log? n logn—1 log?n
kLPeJ — kPe _ \/ﬁk (2111k)'n+ ( n? ) _ \/ﬁ (1_g2—n+0(%)) (6)
Je{pe} Je{pe} fepe}
Substituting[(6) and_{4) intd{5), we finally obtain
\/ﬁ . k;l_{pe} \/ﬁ . k;{pe} logn
< .
Ee(n, k) < Y + X — +o<ﬁ) @)

Note that the constant inside tlieterm can be chosen independentkof Now we proceed with the
odd-length palindromes. The following property of the isgtion poinp, = p,(n, k) is quite useful.
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Lemma3.5. p. =p,+ 1/2.

Proof:
Recall thatp, is the root of the equatioh®°*! = n — 2p,, sop, = log/n — 2p, — 1/2. Similarly,

Pe = log+/n — 2p, + 1. Then
1 n—2pe+1
Pe —Po= 5 +1og | ————. (8)
2 n — 2p,

Denoting the logarithm iri {8) byA, we obtain

—2po—1—2A+1 2A
A:log\/n pn—Qp + =log4/1— . 9)

n — 2p,

If A > 0, then the square root ih](9) is less than 1, implyikg< 0. Similarly, if A < 0, then the square
root in (9) is greater than 1, implying > 0. These contradictions show that the only possible case is

A = 0, whence the result. O
Lemmd 3.5 and (4) give us
logn —1 logn —1 log?n
= - . 10
P 2 (2Ink)-n < n? ) (10)
Similar to the even case we obtain
kaH —'_anl:/zj n—2m _ k‘LpOJH n Z m—l—l
= 1= [po)+1(1 —
LpoJ"l‘l 1 1/k k (1 1/k k poJ
[po]+2 _
k—1 = klpol(k—1) kLPoJ(k:—l)2
From [6) and Lemm@a_3.5 we have
logn—1 log? n
ppo) _ VI (1= 25— + O(55")) (12)
B k{po}+1/2 )
Substituting[(IR) and_(10) inté_(11), we finally get
V- k32 g /24 P} logn - Vk
< P
Eon, h) < Y + T +0( o ). (13)
and from [[7) and(13)
NG (\/E (kK 1o} o fdpody 4 (p1-1ped 4 k{pe})) logn - Vk
<
E(n, k) < P +O( NG ) (14)

whence the result. O
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Remark 3.1. According to Lemma_ 315, the expressions in internal paesgh in[(I4) oscillate in an-
tiphase. So, ifp,} ~ 0 (i.e.,n is slightly bigger than an odd power &j, the bound[(14) approaches its

maximum and approximates tgn(v/k + %), and if {p.} =~ 0 (i.e., n is slightly bigger than an even
power ofk), this bound goes to minimum values close,to(3 + ;).

The given upper bounds leave an impression that for any fixélte functionE(n, k) oscillates
between its low values close @,/n for some absolute consta@tand its high values close tB+v/nk
for some absolute constant. But the bound[(14) is somewhat imprecise, because thalibitiund [(1)
is generous enough. Indeed, if the number of palindromitofa®f lengthm in a word is greater than
the number of distinct palindromes of this length, still opalindromes of length: can be missing
from this word. Similarly, if the number of these factors ehgthm in a word is less than the number
of distinct palindromes of this length, some of the fact@as cepeat, decreasing the number of distinct
palindromes. Since the probability of an event “to contaigiven palindrome of lengthn” depends
not only onn, k, andm, but also on the internal structure of the palindrome, wanoanbtain a lower
bound on the expected number of palindromic factors justgusiandard balls-and-bins considerations.
Instead, we use a more powerful technique. This technigbased on the asymptotic estimates of the
number of words of length avoiding a given fixed factor.

4. Lower bound through avoidance of factors

Below we assume that/aary alphabet is fixed, &k > 2, all words are ovebl, andP is the set of all
palindromes oveE. We say that a word avoidsa wordw if w is not a factor ofu. Let A,,(n) be the
number of words of length avoiding the wordv and letE(n, k, m) be the expected number of distinct
palindromes of length in the words of length.

Lemma4.1.
E(n.kym) = Y (1_141;5:1)). (15)
£=3
Proof:

Consider the function on words that equals 1 if a word costaimiven lengthn palindromew and 0

otherwise. Applied to a random word, this function becomearmlom variable with the expectation
(1 — A;g—ff”)) This expectation is exactly the probability for a randonrdavof lengthn to containw.
Clearly, by the linearity of expectatiokn, k, m) is the sum of such expectations over all palindromes

of lengthm. O

To make use of[(15) for the estimation Bfn,k) = > _, E(n,k,m), we have to estimate the
number of words avoiding a given palindrome. For this pugpaege use the technique developed by
Guibas and Odlyzko iri [5]6]. To formulate some of their resulve need to introduce some important
notions. Recall that a word is aborder of a wordw if u is both a prefix and a suffixof w. With
each wordw of lengthm we associate itborder array, which is a wordw[1..m] over{0, 1} such that

wli] = 1ifand only ifw has a border of lengtln—i+1. The border array can be interpreted as the array

2This definition deviates slightly from the usual one, whigllades the trivial case = w.
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of coefficients of a real-valued polynomigl,(z) such thato[:] is the coefficient ofe™~%. We refer to
this polynomial with 0-1 coefficients as th®rder polynomialof w. Sincew|[1] = 1, this polynomial
has degreen—1.

Example 4.1. The wordw = aabaabaa has non-empty bordets, aabaa, aa, anda. Its border arrayb
equals10010011 and its border polynomial i§,(z) = 27 + z* + 2 + 1.

Theorem 4.1. ( [5,6])
1) The number4,,(n) of words of lengthn avoiding a given wordov of lengthm > 3 is

Aw(n) = Cob? + O(1.7"), (16)
B 1 1l (k) m? B 1
wheret,, == o5 = #55 —O(Ew): Co= T an

2) The conditionf, (k) < f. (k) implies A, (n) < A, (n) for alln > 0 and, in particularg,, < 6,,.

Lemma4.2. 1) For wordsu andw, one hasf, (k) < f.(k) if and only if & < w, whereu andw are
treated as binary numbers.
2) For anym, max|,,|—p, 0w = 0gm.

Proof:
1) The comparison aof andw as binary numbers has the same result as the comparisomoasieary
numbers; but the number havimigas itsk-ary notation is exactly,, (k) by the definition off,,(z).

2) The border array af™ equalsl™ and thus represents the biggest number that can be written in
binary inm bits. Now the statement follows from statement 1 and The@ti{R). O

Applying Lemmd 4.R and Theoredm #.1(2), we see that
Ay(n) < Agm(n)  for any palindromew of lengthm. (18)

Thus we can get the lower bound on the expected number ofjpaliric factors replacing in (I5) with
the wordv = a™. We havef,(z) = 2™ 1 +2™ 2+ ... 4+2+1= (2™ —1)/(z — 1), as we can assume
x > 1 sincek, 6, > 1. Hence,

b ™ =1y ma™ Yz —1)—2™+1  (m—1)z™ —ma™ ! +1
folw) = ( z— 1 ) - (z — 1)2 - (z — 1)2 (19)
Substituting these formulas info {17) and performing ghiorward transformations, we get
— k—1 — k™ —mk™ 41 2
Hv:k—k 1_( )((m ) m —I—) O(m_)
km 1 (km _ 1)3 f3m
_ k-1 k-1 1 (k™ +3)(k — 1)((m — 1)k™ — mk™=! 4+ 1) m?
=h= T+ )| - Jom +0(15m)
k—1 k-1 m-1 2m-1 m km + m?
=k- e j@m  geme1 T g@m il O( L3m )
B k—1 m(k—1)?2 km + m?
=k- km k2mtl O( L3m > , (20)
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1
1—(k—6,)%f(0)
2

1+ (St o)) () o) — 1+ o) @

C, = =1+ (k—0,)2£,(0) + O((k — 6,)"£,°(9))

Now we use[(1B) to estimate the sum[inl(15).
Since our goal is to estimate the raﬁg\};_l—k), we do not need to cope with arbitrany. Namely, we
put
m = 2(pe +¢) =2(po +¢) + 1, wheres = O(1). (22)

Thus,m = logn + O(1). This is sufficient for reaching the declared goal becauskefollowing
Remark 4.1. If m — logn = g(n) for any growing functiong, thenE(m, k,n) = o(y/n), and then

> mlog(n)+g(n) E(M, k,n) = o(y/n) (see FigLL); the same observation is true for the symmedsse ¢
m —logn = —g(n).

From [22) and[{¥) we gét™ = n - k% - (1 — O(}%™2)), C, = 1 + O(*%"), and

n

0, (k:—l)(l—l—O(bi")) +O<logn) L E—1 O(logn>. (23)

Rl n - kit n2 - kltee n2

Substituting(1 — a/n)" = e~ *(1 4+ O(«/n)) for big n, we have

a1 (o) - Aol Lo(E))

—1-(1+ o(log”)>e—zc’f%%s+o“°i">(1 + o(%)) — 1 e REE | O(l"i”) (24)

n

Finally, from (15) we obtain

b\ 7 kE(1— _If_ﬁ?\/’ Olognn> . |
s -89-S

/n

In particular, we proved the lower bound of ordén for E(n, k), finishing the proof of Theoren 1.1(1).
Furthermore, consider the functiaitk,s) = k°(1 — e‘klf%és). Clearly, g(k,0) = Q(1). For oddm,
¢ = 0 means thap, is integer. By the definition of,, for p, = i we haven = n; = k%! 4 2i. So if we
take the sequendgr; }5° andm = 2i+1, we obtainw = Q(vk). Comparing this to Lemnia 3.4,
we obtain statement 4 of Theoréml1.1. On the other hand, Ishas thatg(k,c) = Q(k~I¢) for any

e. Indeed, ife > 0, then the Maclaurin series fer R is alternating and monotonely decreasing in
absolute value, which gives y$k,c) = k¢(1 + o(1)). If £ < 0, then

glke) = k(1= (7)) > 4 (1-e2) =@ k).

For anyn and the odd numben = 2(p, +¢) + 1 which is the closest odd integer2p, + 1, the absolute

value ofz is at mostl /2. Then for thism we havew = Q(1). According to Remark3l1, there is
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a sequencén; }5° (more precisely, one can take = k% + 2i — 1) such that’% = O(1). Thus, we
finished the proof of Theorem 1.1(3).

Note that the statement 2 of Theoreéml 1.1 is not proved yem Btatements 3 and 4 it follows that
the limit doest not exist fok big enough, while we have to prove this fact for fallTo do this, we need
to tighten both upper and lower bounds.

5. Tight two-sided bounds

Lemma 5.1. With high probability, all borders of a randomly chosen pdfome of lengthm have
lengths less thaflog m |.

Proof:

By the definition of a border, any border of a palindrome is Bndeome. Thus, a palindrome has a
border of a given length if and only if it begins with a palindre of this length. A random word of
length2c or 2¢+1 is a palindrome with probability—¢. Hence, by the union bound, the probability for
a random word to begin with a palindrome of length at |@ass less then

- —Cc __ 2k —c
2z::k _m.k .

If we takec = [1%™ |, this probability will beO(m~'/?). Thus, a palindrome of lengtin has no

borders of length at leagt- | ‘6™ | < |log m] with probability 1 — O(m~"/2)., O

Now pick a palindromew of lengthm at random. By LemmB35.1, its border arraylooks like
10 - - - Ou, where|u| < |log m | with high probability. Sincev definitely has a one-letter bordés,| > 0.
Therefore, Theoref 4.1(2) and Lemmal 4.2 allow us to téke! + 1 andz™ + zl°¢™] as the lower and
the upper bound fof,,(z) when estimatingd,, (n) (the lower bound works always and the upper bound
works with high probability).

Now we take the function™~! + x¢, where the number € {0, 1, ..., [logm|} is unspecified, as
fw, and computed,, (n) from it. We havef’,(z) = (m — 1)2™~2 4 cz~L. Similar to [20) and[(21) we
obtain

b =h= k:m—11+ 3 = —(klgsz’:?;;k—l O(Z;_Z)
=k - kn}—l + k2m1—2—c - Z;n:—i + O<k2c+3 * Z:jm i m2> , (26)
Cw =17 (k—le)zf{U(H) =1+ (g + O )) (o= v + ) + 0 (250
— 14 0(%) 27)
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Next we substituten = 2(p. + ¢) = 2(p, + ¢) + 1, wheres = O(1). Recalling that® = O(m), we
obtain, similar to[(2B)[(24),

1—Cw(%”)":1—e—k% +0(1°i”). (29)

The resulting asymptotic formulas are independent &o [29) gives the asymptotic value of a term in
(@I3) with high probability. All terms falling into the rem@ing small group can be bounded usingl (24),
which gives a formula equivalent tb_(29) up to a multipligatconstant. Hence we can substitulite] (29)
for all terms in (1), getting finally

) (1 i logn) 4 is even,
et —paton- (1)) = {6 PR e

To extract the bounds 05(37'“) from (30), we look at the function appeared as the coeffi@éntn.

Remark 5.1. The functionf(z) = z(1 — e~'/=*) behaves over the intervé, ) as follows:

1. f(x) ~ 1/ac (up to a cubically small term) as — oo; more precisely, forr > 1 one has
f(x — A, where0 < A <

) =
f(x) ~ z (up to an exponentially small termze—1/2* )asx — 0;
)

f(z) has a single maximum ~ 0.6382 at the pointzy ~ 0.8921 and is nearly constant around
th|s point (e.g.f(1) =1 — 1/e =~ 0.6321).

T 2:v3 + 6:v5 24:v7’

Now considerF'(k,e) = Yo _ f(k**%). By Remark Gl this series clearly converges, being
bounded by the sum of two geometric series with the same deatonk <. FurthermoreF'(k,¢) is
periodic with the period 1 for any fixekl € N\{1}.

To make the computatlon of the suktn, k) = > _, E(n, k, m) easier, we first discard most of its

terms, leaving) logrng;-c E(n, k,m), for some constant. This produces an error of order</2,/n
(see Fig[lL; cf. Remar@ 1). Every term of the remaining samlze computed by the formula_{30).
Next we replace this finite sum with an infinite sum of terms)(8ken for alle such that-co < € < oo
and eithep, +¢ or p, + ¢ is an integer. By Remafk 8.1, the sum we thus added is alsadefbrc/2\/ﬁ.
Hence, we totally changE(n, k) by an amount of ordek=%/2,/n. Since the constant can be taken
big enough, we can neglect this change in our consideraéindsdentifyE(n, k) with this infinite sum,
getting

E(n,k) ~ ( (k, z—:)\/_+F(k‘ €+ ))\/_ wherep,(n, k) + e €Z. (31)

In order to prove Theorem 1.1(2), it remains to show that timetion 7'(k, £) has no period /2 for any
fixed k € N\{1}. For this, let us first considef' (k,0) and F(k,1/2). From [30) and Remaifk 5.1 we
have

12 1 1 | |
Fh O =1t o o) "o —1)  mee S WA < gy G2
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yielding F(k,0) > 1 — 1 + 27 — 53— for k > 3. Similarly,

2(k3—1)
2\/% }3/2 15/2 1
F(k,1/2) < — — . 33
(h1/2) < 37 2(k3—1)+6(k:5—1) Vkek ¢
Then y y
1 20 -vk) (k%2 -1) E>/2 1
_ >1— = - .
F(k,0) - Fk,1/2) 2 1 e T ho1 T 2(k3 —1)  6(k5—1) i Vkek 59

The difference[(34) can be checked by hand or by comput&tedsymbolic computation to be positive
for anyk > 4. Hence, the functior¥'(k, ) has no period /2 in these cases. This implies that no limit

E(\%“) exists according td(31). The casks= 2 andk = 3 require a separate analysis, but
sincek is fixed, this is feasible. It appears that in each c&§k, <) has a single maximum and a single
minimum on any interval of length, and thus has no period 1/2. More detailethx F'(2,¢) ~ 2.55775

at the pointry ~ 0.398 andmin F'(2,¢) ~ 2.55647 at the pointzy ~ —0.103; max F'(3,¢) ~ 1.62212

at the pointzy ~ —0.251 andmin F'(3,e) ~ 1.60452 at the pointzy ~ 0.255. This finally proves

statement 2 and then Theorém]1.1.

limy, o0

Remark 5.2. The difference between the maximum and the minimum in tharinase is really tiny;
to prove its existence, all terms given in Remark 5.1(1,8)emsential.

With all the bounds obtained, the following proposition ésg

Proposition 5.1. (1) limg_,, C(k) =3 — 1/e.
(2) limy_,o0 C'(k)/vk = x, Wherey ~ 0.6382 is the maximum of the functiof(z) = z(1 — ¢~1/*")
in the interval(0, co).

Proof:

For statement 1, note thdf (30) gives us a coefficient of okdér! for the number of odd-length
palindromes and a coefficient of order!¢! for the number of even-length palindromes. So we can get
a coefficient of order)(1) only by taking a subsequence @ such that the correspondinags tend to
1/2. In this case, even palindromes contribite 1/e + O(1/k) and odd-length palindromes contribute

2 + O(1/k), whence the result.

Let us turn to statement 2. Leg = log xy, wherex is defined in Remark5.1(3). One can choose a
subsequence of’s such that the corresponding sequence'®tonverges tay. Then the expectations
E(n, k,m), corresponding to thes€s ande’s, form a sequence, equivalent {a/kn asn — oo, see
(30). On the other hand, the functiqn/kn bounds any sequence of expectatififis, k, m) from above.

It remains to note that at most one teEtn, k, m) for a givenn is proportional toy/kn while all others
are proportional té*./n for somec < 0. The result now follows. O

6. Numerical resultsand possible extensions

Below we give, in Tablg]1, the numerical estimates for sonméquéar values of” (k) andC (k) together
with the corresponding values efsuch thatp, + ¢ is an integer ands| < 1/2. We compare these
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Table 1. Theoretical values of the constafifg) = liminf, E(";lk) andC(k) = limsup,,_, E(&Lf), the
corresponding values of the distancbetweerp,(n, k) and the closest integer, and the experimental data on the

number of distinct palindromes in random words of lengthimjtto the obtained values ef

k| C(k) e| C(k) g n | Pals,/\/n 7 | Palsy /N
6.17315 -0.103| 6.17368 0.398| 618843800 6.17171 |12385458006.17276

2
3|4.40121] 0.255|4.41410(-0.251| 8188445 4.40052 24940577 4.41358
413.81315 0.360|3.85763 -0.167| 24747862 3.81195 6657745 3.85465
5| 3.51925 0.409| 3.60893| -0.129| 1307656( 3.51834 2914038 3.60581
6

3.34259 0.438|3.48553|-0.108| 2096750 3.34202 14840282 3.48520
10| 3.02693| 0.485| 3.41133/-0.071| 1071524 3.02544 13842043 3.41175
50| 2.70152] -0.485| 5.09183 -0.032| 5877686 2.70007 160063| 5.08441

numerical values against the experimental data on thedvahmc richness of random words. The prob-
lem of counting distinct palindromic factors in a word candfficiently solved: se€ [4] for an offline
algorithm and|[3] for an online one. This makes possible #peaments with long random words. For
each length, Tablel 1 contains the average number of paimesdor 1000 experiments, divided k.
The experimental data agree quite well with the theory; émger words the agreement is better. We
also mention a special situation with the binary alphabies:differenceC (2) — C(2) is very small, and
the values ot andz are “swapped” compared to bigger alphabets.

Finally, we point out that the technigue used in this papearlmapplied to computing the expected
numbers of other types of repetitions in random words. Fargle, it is quite easy to show that the
expected number of squares irk-@ry word of lengthn is \/n; moreover, the ratio of this number and
v/n tends to a constant &s— oco. Indeed, squares are very much alike the even-length pafimes
(e.g., the left graph of Fidl 1 suits for squares as well), thede is no analog of odd-length palindromes
to disturb the general picture. The only significant differe between squares and even palindromes is
in their borders: palindromes usually have only short bardehile a square of length always has the
border of lengthn /2, andwith high probability has no longer bordersThe corresponding difference
in border polynomials affects the constant before {he term, but not the term itself (compare [25)
against[(3D)). Thus, the analog bf130) can be obtained, slightly different constant and without the
alternative for odd-length palindromes.
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