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Abstract 
Diversity of mesostructures formed in steel at cooling from high temperature austenite (γ) 

phase is determined by interplay of shear reconstructions of crystal lattice and diffusion of 
carbon. Combining first-principle calculations with large-scale phase-field simulations we 
demonstrate a decisive role of magnetic degrees of freedom in the formation of energy relief 
along the Bain path of γ-α transformation and, thus, in this interplay. We show that there is the 
main factor, namely, magnetic state of iron and its evolution with temperature which controls the 
change in character of the transformation. Based on the computational results we propose a 
simple model which reproduces, in a good agreement with experiment, the most important 
curves of the phase transformation in Fe-C, namely, the lines relevant to a start of ferrite, bainite, 
and martensite transformations. Phase field simulations within the model describe qualitatively 
typical patterns at these transformations. 
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1. Introduction 
Despite a broad distribution of numerous new materials steel known from ancient times 

remains the main construction material of our civilization [1], due to high availability of its main 
components (Fe and C) and diversity of properties reached by a realization of various 
(meso)structural states [2,3]. One can control the structural state of steel due to a rich phase 
diagram of iron with several structural transformations at cooling from moderately high 
temperatures ( αγδ →→ ); the presence of carbon adds carbide phases, cementite Fe3C being 
the most important one. Development of the phase transformations in steel includes two main 
types of processes, the crystal lattice reconstruction and redistribution of carbon between the 
phases. Depending on the rates of these processes metallurgists separate three main types of the 
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transformations, namely, ferrite, bainite, and martensite [2,3,4]. In practice, all transformations 
(except the martensitic one) involve both shear and diffusion mechanisms, their relative 
importance being changed with the temperature increase [4]. The difference between these types 
of transformations determines the diversity of properties of steel and therefore is of crucial 
importance for our understanding of metallurgical processes. However, there is still no 
commonly accepted quantitative theory which could describe the change of transformation 
mechanism with temperature from martensitic (lattice instability) to ferrite (nucleation and 
growth).  

Here we demonstrate that the main factor determining scenario of the phase 
transformations in steel is the magnetic state of Fe and its temperature dependence. Empirically, 
the temperature of γ -α  transformation in elemental Fe is close to the Curie temperature of α -
Fe; therefore the idea on the decisive role of magnetism in phase transformations for pure iron 
looks natural and was discussed many times; for review, see Ref. [5].  

Based on state-of-the-art first-principle calculations and combining it with the phase field 
simulations [6] we build a consistent model which allows us to estimate (with a surprisingly high 
accuracy, keeping in mind its simplicity) temperature ranges corresponding to the three types of 
the transformations. This model includes a generalized Ginzburg-Landau functional for the Bain 
transformation path with ab initio parameterization and nonlinear elasticity equations for the 
tetragonal deformation, as well as diffusion equation for the carbon concentration. Therefore it 
takes into account both carbon diffusion and lattice and magnetic degrees of freedom of iron.  

 
2. Methods 
 
2.1. Generalized Ginzburg-Landau functional for the Bain transformation path 

The minimal set of variables which is necessary to describe the γ -α  transformation in 
steel includes Bain tetragonal deformation and carbon concentration. Other relevant degrees of 
freedom are volume per atom and magnitude of magnetic moment but we assume (following 
Ref. [5]) that they are fast and can therefore be taken into account just by optimization of the 
total energy along the Bain transformation path. The parameter of short-range magnetic order is 
introduced as for the case of pure iron [5].  

A generalized Ginzburg-Landau functional for the total energy can be represented in the 
form [7]:  
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where eg  is the energy density of lattice deformations, tk  is a parameter determining the width 
of interphase boundary [7].  We restrict ourselves by a two-dimensional model when eg  can be 

chosen as [8,9]: 2/)( yyxxve εε +=  
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where 2/)( yyxxve εε +=  is dilatation, 2/)( yyxxte εε −=  tetragonal deformation, xyse ε=
 

shear deformation, and ),,( Tceg tt  is the energy density depending on the tetragonal deformation 
parameter, local carbon concentration, and temperature. Using two-dimensional model is, of 
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course, a simplification which does not provide the complete picture of morphology after 
transfromation since we have two orientation options for α-phase. Nevertheless, this model gives 
correctly thermodynamic condition of transformation and describes main qualitative features of 
microstructure formation [5,8,9]. Similar to Ref. [5] we assume that in γ -phase (initial phase for 
the transformation) 0=te  and in α -phase 2/11−=te . The coefficients sv AA ,  are expressed via 
elastic moduli [7], 1211 CCAv += , 444CAs = . Following Ref. [5] we determine the energy density of 
tetragonal deformation as  

                  )(),(~),(),,( TQceJcegTceg ttPMtt −=         (3) 

where ),(),(/),(~
11

2 cegcegJzmceJ tFMtPMt −=Ω=   is exchange energy, Ω  is the volume per 
atom, 1z  is the nearest-neighbor number, J1 is the exchange integral, m is the magnetic moment, 
and  

2
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is the spin correlation function dependent on temperature. We have improved our model for the 
temperature dependence of the nearest-spin correlator )(TQ  in comparison with our previous 
work [5]. Namely, we use Oguchi model [10] and determine )(TQ  as TTQ /1~)(  for T>TC; for 

T<TC we use the empirical formula for magnetization [11], choosing parameters in such a way 
that )( CTQ ~0.4, according to Ref. [10]. Thus, at T=TC the dependence )(TQ  has a cusp. Curie 

temperature TC is related to the exchange parameter as Ω= )(~)( ttC eJekT λ , with the numerical 
factor for α -Fe αλ =0.472; this choice of λα provides an agreement of the Curie temperature 
with the experiment, TC=1043K.  The correlator for γ -Fe is chosen in a similar way, with the 
Curie temperature fcc

CT ≈ 300K, according to the calculations [12] for the atomic volume 
12≈Ω Å3; 606.0=γλ  according to Ref. [13]. The temperature dependences of the correlators 

are shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Temperature dependences of the spin correlator )(TQ  for α -Fe (1) and γ -Fe (2).  
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To calculate free energy, we have to add entropy contributions to Eq.(1). The magnetic 
entropy is calculated, as in Ref. [5], from Hellmann-Feynman theorem. The configurational 
entropy of carbon is found from the model of ideal solutions, assuming that for T > 300K carbon 
is equally distributed among all three interstitial sublattices in α -Fe whereas in γ -Fe carbon 
atoms can occupy only quarter of the interstitial positions [14]. As a result, we obtain the 
following formula for the local density of free energy:  
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Here ( )ts ef  is a function provided a gradual switching of the entropy contribution from fcc to 
bcc ( ( ) 1=ts ef  in fcc and ( ) 0=ts ef  in bcc phase); s0 is the high-temperature limit of the entropy 
difference between the phases including phonon contribution. It is commonly accepted (see, e.g., 
Ref. [15]) that the value s0 is almost temperature independent at T>TD, where TD is Debye 
temperature (equal to 473K and 324 K for bcc and fcc phases, respectively). We will assume that 
it is a constant. The latter has been chosen such that the start of the transformation determined by 
the condition 0)()()( ≡−=Δ TfTfTf bccfcc  agrees with the experimental value for elemental 
Fe, T0 = 1184K. This gives us the value s0= -0.19k, quite close to the experimental estimate [16].  

The resulting Ginzburg-Landau functional for the free energy reads:   

( ) ( ) drekeAeATecfF t
t

s
s

v
v

t∫ ⎟
⎠
⎞

⎜
⎝
⎛ ∇+++= 222

222
,,                                     (6) 

The quantities ),(),,( cegceg tFMtPM  are found from the energy curves along the Bain path 
for para- and ferromagnetic states, respectively. Carbon shifts the thermodynamic potentials of γ 
and α phases of Fe in accordance with its solution enthalpy. As was shown in Ref. [17], carbon 
turns out to effect dramatically on magnetic state of γ-Fe; it can create a locally 
ferromagnetically polarized region with tetragonal distortions. Thus, thermodynamics of γ-Fe-C 
system, in particular, solution enthalpy of carbon, should be strongly dependent on local 
magnetic order. Here we include the dependence of the energies of γ and α phases on carbon 
concentration into the model based on first-principles electronic structure calculations of the 
solution enthalpy. 

 
2.2. First-principle calculations 
The calculations of energetics of Fe-C system were performed by density functional theory 

in the pseudopotential code SIESTA [18], similar to our previous work [17]. All calculations 
were carried out using the generalized gradient approximation (GGA-PBE) with spin-
polarization [19]. Full optimization of the atomic positions was performed. During the 
optimization, the ion cores were described by norm-conserving pseudo-potentials [20] and the 
wave functions were expanded with a double-ζ plus polarization basis of localized orbitals for 
iron and carbon. Optimization of the forces and total energy was performed with an accuracy of 
0.04 eV/Å and 1 meV, respectively. All calculations were carried out with an energy mesh cut-
off of 300 Ry and a k-point mesh of 4×4×4 in the Mokhorst-Park scheme [21]. For the modeling 
of all configurations 3×3×3 supercell of 108 iron atoms in fcc configuration was used. Varying 
of the concentration of carbon was realized by the change of the number of interstitial carbon 
atoms in the voids from one (~1 at%) to three (~3 at%). For the modeling of paramagnetic 
configuration five possible special quasi-random structures (SQS [22]) of magnetic moments 
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were generated by reinitialize each time the pseudo-random number generator. The structure 
with the lowest total energy have been defined as a ground state and energy difference per iron 
atoms have been used to estimate the error of the modeling of paramagnetic iron. The modeling 
of the Bain pathways was performed by the method previously employed for the pure iron [12]. 
In contrast to Ref. [12], to take into account thermal expansion effects the elementary cell 
volume was chosen close to experimental values for γ- and α-Fe at the temperature of γ-α 
transition and linearly interpolated for 1/2/1 << ac  (actually, the change of the lattice 
constant along the path is within 1%). The difference of the energies between ferromagnetic and 
paramagnetic state agrees well with the “exchange energy” calculated in Ref. [12], thus, the 
different choice of the lattice constant is not essential.   

The energies found from the first-principle calculations for pure iron were approximated by 
the following polynoms:  
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Here the order parameter 11 <<− φ  related to the Bain tetragonal deformation as 
( ) te12/2 −=φ . Positive and negative values of φ  correspond to two possible (mutually 

orthogonal) directions of the Bain deformation in two-dimensional case. Its form guarantees 
extrema at the points 0=φ  or 1±=φ , parameters fcc

PMg , fcc
FMg , bcc

PMg , bcc
FMg , PMc , FMc  were found 

by fitting to the ab initio computational results. 
We do not take into account carbon-carbon interactions, due to a smallness of carbon 

concentration. Thus, its contribution was taken as linear:  
( )( ))(1)(~),( )()()()()( φεεεφφ s
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Function ( )φsf  have been chosed in form ( ) ( )221 φφ −=sf . Within the approximation (8) the 
effect of carbon on Bain-path energetics is determined only by carbon solution energies in γ - 
and α - phases. We deal with the temperatures T > 400K where carbon fills equally all three 
sublattices of octahedral interstitials and therefore we do not takes into account tetragonality of 
martensite which arises at T ≈ 300K [14]. 

Parameterization of these formulas from ab initio calculations leads to the following 
values: bcc

PMg =0.19, fcc
PMg =0.14, fcc

FMg =0.095, bcc
FMg =0 (in eV/at) and PMc =0.05, FMc = - 0.08 (all in 

eV/at). These data were slightly different from those calculated by us earlier [12] by VASP (the 
energy bcc

PMg  coincides with Ref. [12], the energy fcc
PMg  differs by -0.02eV/at). The solution 

energies of carbon in different phases, bcc
FMε =0.8, bcc

PMε =0.7, fcc
FMε = - 0.2, fcc

PMε =0.22 (in eV/at) were 
chosen on the base of similar calculations for iron with carbon concentration ~1% at. The value 

bcc
FMε  agrees with the result of the previous first-principle calculations [23]; fcc

PMε  agrees with the 
result [17], but lower than the experimental value 0.4eV/at [24]. 

 
2.3. Kinetic equations 
It was shown in Refs. [7,25] that at the description of atomic displacements in solids one 

cannot take into account only the order-parameter (in our case, tetragonal deformation) since 
other components of the deformation tensor are coupled to the order parameter by Saint Venant 
compatibility equations. The latter result in effective long-range interactions which are crucial 
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for the pattern formation at the transition [6,8,25]. Therefore, following Ref. [6] we write the 
dynamical equations for atomic displacements in a form similar to Newton equations rather than 
Allen-Cahn time dependent Ginzburg-Landau relaxation equation for the order parameter 
[26,27]. It allows taking into account automatically the Saint Venant compatibility equations.  

We exploit the equations of motion used by us earlier for elemental iron [5] plus the 
equation of carbon diffusion: 
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Here ρ  is the mass density of iron; elastic stresses ijσ  and a flow of carbon atoms I  are 
calculated via variational derivatives of the Ginzburg-Landau functional:  
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where D is carbon diffusion coefficient (see Appendix); the deformations ijε  introduced above 
are connected with the variable of our model as   
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As a result,  
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where 2/~
vv AA = ,  2/)12(~ −= tt kk , tk =10-3 (in the units of αJL ~2Ω  where L is the sample size, 

αJ~Ω =0.19eV/at). We pass further to dimensionless units Lrr ii /→ , Luu ii /→ , 
ρ
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To maximize the size of the system under simulation for given computer resources we 
restrict ourselves to the two-dimensional case. It is enough to distinguish clearly patterns typical 
for different transformations in Fe-C. The details of the simulations are presented in the 
Appendix.  

 
3. Results and discussion 
 
3.1. Bain path and free energy in Fe-C 

The Bain path is the tetragonal deformation accomplished γ -α  lattice reconstruction, 
which change from 1/ =ac  for fcc (γ) to 2/1/ =ac  for bcc (α) structures. Dependences of 
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the energy (g) and free energy (f) per Fe atom on tetragonal distortion calculated according to the 
formulas (3–5), (7–8) are shown in Figure 2. One can see that the ratio of the energies for α and 
γ phases changes strongly with the temperature decrease and α-phase becomes preferable at T < 
TC. Figure 3 displays the temperature dependence of the energy )()()( TgTgTg bccfcc −=Δ  and 
free energy difference )()()( TfTfTf bccfcc −=Δ  in comparison with the data [16] for elemental 
iron. One can see on this figure that the model constructed with correlator )(TQ  (see Figure 1) 
describes correctly thermodynamics of both phases of pure Fe within the temperature range 
600÷1200K and agrees well with the results of CALPHAD [16]. It turns out that the magnetic 
contribution dominates at T ≤ TC and is compensated essentially by the phonon contribution at T 
> TC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. (Color online) Energy (a) resulting from the first-principle calculation for the Bain path 
in ferro- (curves 1,2) and paramagnetic (3,4) states for carbon concentration C = 0 (1,3) and C = 3 at% 
(2,4). Free energy (b) as functions of tetragonal deformation for temperatures T=600K (curves 1,1’), 
800K (2,2’), 1000K (3,3’), 1400K (4,4’) found from Eqs. (5) and the first-principle computational results 
for carbon concentration C = 0 and C = 3 at%, respectively. Symbols correspond to the computational 
results, solid lines are approximations used in the model.  

 
In elemental Fe, for ferromagnetic state γ-phase corresponds to the maximum of the total 

energy, instead of local minimum and therefore the transition to α-phase happens without barrier 
[28]. It turns out that doping by carbon does not change this important peculiarity. Moreover, 
carbon decreases the energy of ferromagnetic γ-Fe, with the enthalpy solution of the order of -0.2 
eV per carbon atom (Figure 2). It is not surprising since carbon creates a strong local 
ferromagnetic order in paramagnetic or antiferromagnetic γ-Fe [17]. For the other cases (α-phase 
and paramagnetic γ-Fe) the solution enthalpy of carbon is positive. It is a common wisdom that 
interstitial impurities (including carbon) always prefer fcc surrounding compared to bcc, just for 
geometric reasons (the voids are larger in fcc lattice than in bcc with the same density) [29]. This 
is for sure correct, also for carbon in iron and results in a more pronounced effect of carbon 
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addition on energy bcc-Fe. What is much less trivial is that carbon solubility in fcc iron is very 
sensitive to the magnetic state being maximal in ferromagnetic surrounding. 

 

 
Figure 3. The energy difference )()()( TgTgTg bccfcc −=Δ  (curve 1) and free energy difference 

)()()( TfTfTf bccfcc −=Δ  (curve 2) at γ → α transition in elemental iron in comparison with known 
data  (dotted lines 1’,2’) [16]; contribution of magnetic entropy to the free energy (curve 3) and the 
contribution from phonon entropy (curve 4). 

 
3.2. Construction of the phase diagram and scenarios of transformations in steel 
Now we are ready to discuss the difference between scenarios of phase transformations in 

our model. This difference originates from the strong temperature dependence of driving force 
for the transformation, the rate of carbon diffusion and plastic relaxation of transformation strain. 
As discussed above, the strong temperature dependence of the former (followed from the strong 
temperature dependence of the potential transformation relief) is magnetic in origin: the 
temperature enters our model mainly via the parameter of a short-range magnetic order. 

Ferrite transformation kinetics is controlled by carbon diffusion. Without the redistribution 
of carbon, α-phase is not thermodynamically favorable and therefore ferrite formed by the 
mechanism of heterogeneous nucleation, usually at grain boundaries. At a low enough 
overcooling below the temperature А3 [2,3], determined by the condition of equality of chemical 
potentials for α -phase depleted by carbon andγ -phase enriched by carbon,  and restricting the 
two-phase γ +α  region, the ferrite transformation proceeds slowly since its driving force is 
small and a realization of the transformation requires a redistribution of carbon at large distances. 
Thermodynamic potentials of α -phase without carbon and γ -phase with nominal carbon 
concentration are equalized at a temperature TF < A3, when ( ) ( )TcefTcef tt ,0,,, 0 == αγ , с0 is 
initial (average over the sample) carbon concentration. One can expect that at T ≤ TF the γ -α  
transformation accelerates essentially since in this case the short-range carbon diffusion is 



 9

sufficient. Therefore we identify the temperature TF with the start of rapid ferrite transformation. 
It should be noted that TF appears to be close to Curie temperature TC in a broad range of carbon 
concentration.  

Further decrease of temperature results in a slowdown of carbon diffusion and 
enhancement of the transformation driving force. At intermediate temperatures, a crucial role in 
determining of the temperature of start of transformation [4] is played by a temperature of 
paraequilibrium T0 where the free energies of α - and γ -phases with the same carbon 
concentration become equal, ( ) ( )TcefTcef tt ,,,, 00

αγ = . Temperature T0 was introduced in Ref. 
[30] as a pre-condition for the start of bainite transformation. In this case, as it assumed in [4,30], 
the diffusion is slower than the shear transformation and therefore there is no redistribution of 
carbon between α - and γ -phases during the growth of α -phase plates. The value of A3 and T0 
calculated by us agrees well with the experimental quantity exp

3A and T0Z (Figure 4).  
At last, the martensite transformation is characterized by mechanical instability of γ -phase 

with carbon, that is, the free energy as a function of tetragonal deformation should have a 
maximum instead of minimum at the fcc point, ( ) 0/,, 22 =∂∂ tt eTcef . This condition is attained 
by quenching of γ -phase to the temperature MS where ferromagnetic short range order in γ -
phase becomes important. One can see that the temperature MS found in this way is actually 
lower than the experimental value (see Figure 4). One has to keep in mind, however, that the 
martensitic transformation observed in steel do not follow the scenario of lattice instability and is 
developed, rather, by heterogeneous nucleation and “replication” mechanism discussed 
previously [5]. Indeed, it was shown in Ref. [5] that above MS a broad temperature range exists 
where the transformation is martensite-like but includes nucleation and growth processes. We 
follow the concept of isothermal martensitic transformation [31–34] and accept the condition of 
martensite start as kTCfbarrier 0=→αγ  where parameter C0=0.04 is chosen by fitting to the experiment 
for pure Fe [35]. The temperature MS’ determined in this way agrees well with the experiment in 
a broad interval of carbon concentration.  

With these definitions, the curves A3,T0,TF do not depend on the energy relief along the 
Bain path and are determined only by terminal values fcc

PMg , fcc
FMg , bcc

PMg , bcc
FMg . Contrary, the 

martensitic curves MS’,MS depend on the energetics at intermediate te . For the concentration 
range under consideration the magnetic order effects in γ-Fe are negligible, for the temperatures 
above T~ 400K. Therefore the general shape of the phase diagram (the lines A3 , Tf , T0, MS’) are 
determined, first of all, by the evolution of magnetic state in α -Fe. In particular, the αγ →  
transition turns out to be possible above Curie temperature ( bcc

CT ≈1043K) due to the short-range 
ferromagnetic order in α -Fe (see also Ref. [5]). The short range magnetic order in γ -Fe 
becomes important at T ≈ 400K, which determines the temperature of start of the martensitic 
transformation MS, developing via the lattice instability. 

The results presented in Figure 4 are purely thermodynamic for the lines A3,T0,TF and do 
not take into account the internal strain produced by transformation which plays a crucial role in 
phase morphology and transformation kinetics. Due to requirements following from Saint 
Venant compatibility equations, the resulting Ginzburg-Landau functional for the free energy 
should include different components of the deformation tensor as well as their gradients (6). 
Besides, the plastic relaxation of elastic stresses accompanying the formation of the new phase is 
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another important factor which was taken into account in a model way (see Appendix). We use 
the phase-field model formulated earlier for the elemental iron [5], generalizing it with taking 
into account diffusive redistribution of carbon. Therefore, we describe the transformation 
kinetics by equations for atomic displacements, plus diffusion equation for carbon, using the 
Ginzburg-Landau functional (6), see Methods section for details. 

 
 

 
 
 

Figure 4. The left panel shows calculated lines (solid) corresponding to the start of ferrite 
transformation, paraequilibrium, and the start of martensitic transformation. Ms and Ms’ are temperatures 
start of lattice instability and martensitic-like transformation. Dashed lines show experimental boundary 
of two-phase region (A3) [36], experimental paraequilibrium temperature (T0Z) [37], and experimental 
temperature of start of martensitic transformation ( exp

sM ) [35]. The right panel shows microstructures 
forming as a result of transformation at various temperatures: T0<T<A3 (1,2), Ms’<T<T0 (3,4; 5,6), T<Ms’ 
(7,8). The left and right columns at this panel correspond to tetragonal strain (black and white are two 
orthogonal directions of tetragonal deformation in bcc phase, grey shows fcc regions) and carbon 
distribution (the darker the smaller), respectively.   
 

In the right side of Figure 4 we show typical patterns of tetragonal deformation (first 
column) and carbon distribution (second column) obtained in our phase field simulations for 
different temperatures. The ferrite transformation starts as a heterogeneous nucleation of α-
phase. One can see, indeed, that at the temperature T<A3 carbon leaves α -phase and this process 
controls a formation of the new phase. For this situation we see arising polygonal particles of 
carbon-free α -phase surrounded by carbon-reach shell that are really typical for ferrite 
transformation [3].  
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For the temperature range MS’<T<T0 the model demonstrates several possible scenarios. At 
small cooling below T0 the transformation develops by the diffusion mechanism. In this case, due 
to incomplete relaxation of the internal stresses α -phase has a shape of plate. For deeper cooling 
a fast growth of the plate via the shift mechanism is possible and redistribution of carbon 
between α - and γ -phases happens only after the plates are formed.  Most of carbon atoms sit at 
the interphases of plates with different orientations. All these features are indeed characteristic of 
early stage of bainite transformation [2,4]. For a longer exposure time the formation of the 
cementite particles takes place that is beyond a scope of our consideration. Finally, at T<MS’ 
local fluctuations initiate martensite transformation which results in a formation of lenticular 
colony of tweens with carbon homogeneously distributed over the sample.  

 
4. Discussion 
To conclude, we propose a microscopic model describing, in agreement with experiment, 

the curves at Fe-C phase diagram separating regions of ferrite, paraequilibrium (bainite), and 
martensite transformations. We were able not only describe these phenomena but, to some 
extent, understand them separating the main factor, namely, the temperature dependence of 
magnetic short-range order. The curves of start of ferrite, paraequilibrium (bainite), and 
martensite transformations are shown in Figure 4, together with known experimental data. This 
is the main result of our work. Keeping in mind that our model is ab-initio based (does not 
contain fitting parameters except the threshold value of energy barrier for martensitic 
transformation) one can consider the agreement as amazingly good. One should stress that this 
agreement is reached for the model where main temperature dependence enters via the degree of 
short-range magnetic order. Thus, the closeness of the Curie temperature in bcc iron to the 
temperature of structural transformation is not accidental but is related with the essence of phase 
transformations both in elemental iron [5] and steel.  

 
Appendix. Simulation of transformation kinetics  
Relaxation processes of elastic fields play an essential role in transformation kinetics and 

morphology of the new phase. The main channel of such a relaxation is a plastic deformation 
arising when the stresses exceed the yield stress. A consequent description of the plastic 
deformation requires an essential complication of the model, by adding parameters describing 
the plastic deformation to the corresponding dynamic equations [38,39]. Instead, we take into 
account the plastic deformation in a phenomenological way. Since the contribution of the elastic 
stresses to the Ginzburg-Landau functional is determined by the coefficients Av,As, we replace 
the real values of these parameters by some effective, temperature dependent values. The scheme 
proposed provides the stress relaxation assuming that the relaxation processes are faster than 
typical times of development of the transformation and that the lattice remains coherent during 
the whole process. We assume that for ferritic temperatures (T>T0) where the transformation 
velocity is limited by the carbon diffusion the stresses have enough of time to relax completely, 
choosing therefore 0≈= eff

s
eff
v AA . Contrary, the martensitic transformation occurs with the 

velocities comparable with the speed of sound and therefore for T < MS there is no relaxation 
within the relevant time interval, therefore v

eff
v AA = , s

eff
s AA = . The values of the parameters Av, 

As where chosen as in Ref. [5]. For the temperature range MS < T < T0 intermediate values of the 
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coefficients eff
vA , eff

sA were used (see Table 1, lines I and II). Parameters eff
vA , eff

sA  for 
martensite (Figure 4, fragments numbered 7 and 8) were chosen in such a way that the average 
elastic energy over the sample was equal to the experimental value of the stored energy in 
martensite, 0.007eV/at [40]. For the other temperature ranges these parameters were chosen 
according to the experimentally known values of the stored energies for Widmanstaetten ferrite, 
bainite and martensite [41].  

The diffusion coefficient of carbon D is different in α - and γ -phases and temperature 
dependent. We use a simple expression ( ) )2( 22 φφγαγ −−+= DDDD ,   where αD , γD  are 

handbook data [42], for which we use approximations (m2/s): )/18530exp(105.4 5 TD −⋅= −
γ , 

231061.152.09.4lg XXD −⋅+−−=α , TX /104= . In particular, at T=1000K the 
ratio αD / γD ≈300, that is, at the precipitation of α -phase carbon is expelled into the boundary 
layer but only weakly diffuse into the bulk of γ -phase.  

We do not take into account temperature-induced lattice fluctuations. The latter are mostly 
important for homogeneous nucleation whereas we deal with inhomogeneous nucleation at grain 
boundaries. Indeed, it is known experimentally that ferrite nucleates preferably at grain 
boundaries and their triple joints. To describe this process we consider a region with two triple 
joints of grains and introduce an additional contribution to the free energy near the grain 
boundary,  

                     ( ) )(2)( 220 xPfxf GBGB φφ −Δ=Δ ,       
( )4

4

13
34)(

x
xxP
λ

λ
+

=                         (16) 

where x is the distance from the grain boundary (in dimensionless units as described above) in 
the direction perpendicular to the boundary, 0

GBfΔ  is the maximal amplitude of the perturbation, 
λ is the parameter characterizing the width of the grain boundary. This means that a near-
boundary region is favorable for the transformation but its penetration through the boundary is 
suppressed by the change of crystal lattice orientation. Apart from this, we use the local 
perturbation initiating the start of the transformation as ( )( )60 1/)( rfrf locloc λφ +Δ=Δ , where r is 
the distance from the center of perturbation region. 

The phase field simulations show that the ferrite transformation observed in the 
temperature range T0<T<A3 is controlled by the diffusion of carbon and requires an essential 
stress relaxation; for homogeneous distribution of carbon and without stress relaxation the ferrite 
embryos has no thermodynamic motivation to grow. In this case, we restrict ourselves by the 
consideration of diffusive kinetics only and calculate the distribution of deformations from 

quasistationary equations 0
),(

=
∂

∂
∑

j j

ij

r
trσ

 for a given (time-dependent) carbon distribution 

(Figure 4, fragments numbered 1 and 2). Since αD >> γD , a carbon shell is formed around 
precipitates of α -phase during the transformation.   

For the temperatures T<T0 the transformation can proceed even for homogeneous 
distribution of carbon. However, to find the temperature T0 from thermodynamic condition 

),1,(),0,( 00 TcfTcf === φφ  is not enough since this condition does not take into account the 
contribution of elastic stresses to the free energy. Our simulations show that the stresses shift the 
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start of the shear transformation towards lower temperatures T<T0. The transformation scenario 
is dependent on the degree of overcooling. For higher temperature when the relaxation is strong 
enough (the case I in Table 1) the transformation is developed similar to ferrite one; it is 
controlled by redistribution of carbon but α-phase has a shape of a plate similar to 
Widmanstaetten ferrite [41,43] (Figure 4, fragments numbered 3 and 4). For lower temperatures 
(weaker stress relaxation, case II in Table 1), γ-α transformation starts as a shear one and is 
developed with a formation of one or several twinned plates depend on magnitude  0

locfΔ . By 
analogy with bainite transformation, one should expect that the plate stops its growth after 
reaching a critical size due to the loss of coherence at γ -α  interface after a plastic deformation; 
further evolution is determined by diffusion of carbon, up to formation of a new plate. In this 
case, we perform simulations in two stages. At the first stage (t<5, dimensionless time was 
determined in section 2.3) we solve the full set of equations with real parameters αD , γD ; only 
weak redistribution of carbon takes place at this stage. At the second stage (t>5) the distribution 
of deformations is frozen and only diffusive part of the dynamical problem is considered. At this 
stage, carbon moves from the bulk of α -plates to the host of γ -phase. (Figure 4, fragments 
numbered 5 and 6).  

In reality, in steel within the temperature range MS’<T<T0, apart from Widmanstaetten 
ferrite, the bainite are observed, with coexistence of shear transformation and carbon diffusion, 
as well as a formation of cementite [41]. To simulate the growth of bainite colony one needs to 
include cementite in the model and to consider in a more consistent way plastic relaxation. This 
issue is therefore beyond a scope of our consideration. Nevertheless, our model is applicable at 
the stage of nucleation and predicts two possible scenarios of the transformation. Depending on 
temperature, it can follow either shear or diffusive mechanisms. 

 
 

 T, 
K 

с L, 
nm 

0
GBfΔ , 

eV/at 

0
locfΔ , 

eV/at 

λ  

v

eff
v

A
A

 
s

eff
s

A
A

 αD , 
m2/s 

γD , 
m2/s 

T0<T<A3 1000  
 
0.01 
 

 
 
500 

 
 
0.01 

 
 
0.03 

 
 
50 

0 0 1.2E-10 4.0E-13 
MS’<T<T0 (I) 850 0.005 0.005 1.6E-11 1.5E-14 
MS’<T<T0 (II) 800 0.015 0.015 7.1E-12 3.9E-15 
MS<T<MS’  700 0.050 0.050 1.1E-12 1.4E-16 
T<MS 350 1 1 3.5E-19 4.6E-28 

Table 1. The parameters used in the simulations. 
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