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The cuprates and iron-based high-temperature superconductors share many common features: lay-

ered strongly anisotropic crystal structure, strong electronic correlations, interplay between different

types of electronic ordering, the intrinsic spatial inhomogeneity due to doping. The understanding

of complex interplay between these factors is crucial for a directed search of new high-temperature

superconductors. Here we show the appearance of inhomogeneous gossamer superconductivity in bulk

FeSe compound at ambient pressure and at temperature 5 times higher than its zero-resistance Tc.

This discovery helps to understand numerous remarkable superconducting properties of FeSe. We also

find and prove a general property: if inhomogeneous superconductivity in a anisotropic conductor first

appears in the form of isolated superconducting islands, it reduces electric resistivity anisotropically

with maximal effect along the least conducting axis. This gives a simple and very general tool to

detect inhomogeneous superconductivity in anisotropic compounds, which is critically important to

study the onset of high-temperature superconductivity.

Introduction

A deep understanding of the mechanisms and prerequisites of high-temperature superconductivity is a fundamen-
tal challenge to condensed-matter physics. In spite of three-decade extensive research, the advance in this field is
still insufficient to reliably predict new high-temperature superconductors. The maximal superconducting transition
temperature Tc in the most promising cuprates and iron-based high-temperature superconductors appears at some
non-stoichiometric chemical composition, or doping1,2. This inevitably leads to a spatial inhomogeneity of these com-
pounds because of local variations of doping level. Hence, high-temperature superconductivity in these compounds,
probably, first appears in the form of small isolated superconducting islands, which become connected and coherent
with decreasing temperature or with changing another driving parameter, i.e. doping or pressure3. Such inhomo-
geneous superconductivity with disrupted long-range order is often called as gossamer superconductivity, the term
first introduced by Robert Laughlin4. Transition to this specific state is supported by the diamagnetic response,
observed in various cuprate superconductors far above Tc.

5–8 The numerous direct observation of inhomogeneous elec-
tronic structure on a microscopic scale of few nanometers using STM and other experimental tools was reported in
Bi2Sr2CaCu2O8+δ,

9–12 in HgBa2CuO4+δ,
13 in Fe-based high-Tc superconductor Pr-doped CaFe2As2 (Tc ≈ 45 K),14

etc. The superconductivity in these compounds, probably, develops in two stages: (i) the preformation of Cooper
pairs on isolated islands, which leads to the diamagnetic response and was even proposed to be an origin of pseudogap
in cuprates,3 and (ii) the onset of long-range coherence between superconducting islands, leading to a zero resistance
along the whole sample.

Whether the spatial inhomogeneity is a concomitant or assistant feature of high-temperature superconductivity is
still debated, although various theoretical models propose an enhancement of superconducting transition temperature
due to such inhomogeneity.3,15 It may also play an important role in thin FeSe films on the interface of SrTiO3, where
superconductivity with high transition temperature Tc ∼ 109K was reported16. In any case, it is highly desirable
to have a general and simple experimental test if superconductivity first appears in the form of isolated islands.
Such a test would be useful in high-Tc superconductors and in many other compounds. The spatial inhomogeneity
of superconductivity may arise not only due to doping, but also due to an interplay between different types of
electronic ordering. For example, the interplay between spin-density wave at imperfect Fermi-surface nesting and
superconductivity in the organic superconductor (TMTSF)2PF6 also leads to inhomogeneous superconductivity and
even to the anisotropic superconductivity onset: superconductivity in this layered compound first observed along the
least conducting axis, perpendicular to conducting planes.17,18 This feature looks odd and counterintuitive, however,
the similar effect was also reported in another organic superconductor (TMTSF)2ClO4,

19 and in the cuprate high-Tc

http://arxiv.org/abs/1610.06117v1
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superconductor YBa2Cu4O8.
20

In this paper we first formulate and prove a general property: if superconductivity in an anisotropic conductor
appears in a gossamer form of disconnected superconducting islands, these islands reduce electric resistivity anisotrop-
ically, i.e. their influence is first seen in electron transport along least conducting axis, perpendicular to conducting
planes. This property may show up as an anisotropic superconductivity onset: the electric resistivity drops consider-
ably along least conducting axis and remain almost unchanged along conducting planes. Below we substantiate and
describe this property theoretically, and then demonstrate it experimentally on a FeSe superconductor. Using this
property we show that superconductivity in bulk FeSe at ambient pressure first appears in the form of isolated islands
at temperature T ∗

c ≈ 35 − 40K, which is close to superconducting transition temperature at high pressure21–23 and
strongly exceeds the zero-resistance superconducting transition temperature Tc = 8K at ambient pressure24. This
discovery may help to understand numerous remarkable and unusual superconducting properties of this compound,
e.g. the high transition temperature Tc ∼ 109K in thin FeSe films16.

Theoretical description of resistivity drop due to rare superconducting islands

In a layered conductor with the anisotropy parameter η ≡ σzz/σxx ≪ 1 and small superconducting islands of volume
ratio φ ≪ 1 (see Fig. 1) there are two parallel ways for interlayer current j to flow, so that the total interlayer current

and conductivity are approximately given by the sums of two terms: jtot = j1 + j2 and σtot
zz = σ

(1)
zz + σ

(2)
zz . The first,

standard way is with almost uniform current density and direction j1 (r) perpendicular to the conducting layers. The

rare superconducting inclusions then only slightly increase corresponding interlayer conductivity σ
(1)
zz proportionally

to their volume ratio, and σ
(1)
zz ∼ ησxx. The second way of interlayer current is via superconducting islands. Since

these superconducting islands are rare, the major part of the current path is in the normal phase. But instead of
flowing along the external field Ez, the current between the islands can flow along the highly conducting layers until
it comes to another superconducting island which allows next lift in the interlayer direction. Then there is no local

current density along the z-axis in the normal phase, and the interlayer conductivity σ
(2)
zz does not acquire the small

anisotropy factor η. However, its path along conducting layers between rare superconducting islands is long and

inversely proportional to the volume ratio of superconducting phase φ, so that σ
(2)
zz ∼ φσxx. Depending on the ratio

η/φ the first or second way makes the main contribution to the interlayer conductivity σtot
zz in such a heterogeneous

media.
In the limit of rare superconducting islands, when their volume fraction φ ≪ 1, one can apply the Maxwell’s

approximation (see Sec. 18.1.1 of Ref.25), first proposed by Maxwell in 1873 for isotropic 3D case. Then the isotropic
3D media of conductivity σ1 with spherical inclusions (granules) of conductivity σ2 with small volume fraction φ ≪ 1
is equivalent to the uniform media with effective conductivity σe determined by the linear equation (see Sec. A of
Supplementary information for details)

σe − σ1

σe + 2σ1
= φ

σ2 − σ1

σ2 + 2σ1
, (1)

which gives

σe

σ1
= 1 +

3φ (σ2 − σ1)

σ2 (1− φ) + σ1 (2 + φ)
. (2)

The problem of conductivity in anisotropic media can be mapped to the problem of isotropic media with anisotropic
coordinate dilations (see Sec. B of Supplementary information for details). Thus, the current flow in the media with
the easy-plane anisotropy, i.e. where σzz ≪ σxx = σyy , is similar to the current flow in (mapped) isotropic media
with σ∗

zz = σ∗

xx = σ∗

yy = σxx subjected to uniaxial dilation along the z-axis: z∗ = z/
√
η, where η = σzz/σxx. Then

the spherical inclusions inside anisotropic media transform to elongated ellipsoids with axis ratio az/ax = 1/
√
η ≫ 1

and eccentricity χ =
√
1− η → 1, which are similar to finite filaments along c-axis. The generalization of Eq. (1) for

the mapped media is25

(1− φ) (σ∗

e − σ1I) +
φ (σ∗

e − σ2I)

I +A (σ2 − σ1) /σ1
= 0, (3)

where I is a unitary 3x3 matrix, and the diagonal matrix A for prolate spheroidal (ax = ay) inclusions is

A =





Q 0 0
0 Q 0
0 0 1− 2Q



 , (4)
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FIG. 1. Illustration of two ways of interlayer current in a heterogeneous media with superconducting inclusions.

The first current path j1, shown by blue arrows, is perpendicular to the conducting layers. The second diffusive path j2, shown by
red arrows, goes via superconducting islands and contains long intralayer tracks. The total interlayer current jz is approximately
a sum of these two contribution: jz ≈ j1 + j2. The yellow ellipsoids illustrate superconducting islands.

where

2Q = 1 +
1

1/η − 1

[

1−
1

2χ
ln

(

1 + χ

1− χ

)]

. (5)

For isotropic case Q = 1/3, the matrix A = I/3, and Eq. (3) simplifies to Eq. (1). For strong anisotropy
η = σzz/σxx ≪ 1, the eccentricity χ ≈ 1− η/2 is close to unity, and

Q ≈ 1/2 + η [1 + ln (η/4) /2] /2. (6)

Substituting Eq. (4) to Eq. (3) gives the linear matrix equation on σ∗

e :

(1− φ) (σ∗

e − σ1I) (Iσ1 +A (σ2 − σ1)) + φ (σ∗

e − σ2I) σ1 = 0. (7)

The solution of this equation is the diagonal matrix σ∗

e . Its three diagonal elements at σ2/σ1 → ∞ simplify to

σ∗

xx

σ1
→

Q (1− φ) + φ

Q (1− φ)
= 1 +

φ

Q (1− φ)
, (8)

σ∗

yy = σ∗

xx, and

σ∗

zz

σ1
→

2Q (1− φ)− 1

(2Q− 1) (1− φ)
=

1

1− φ
+

2Qφ

(1− 2Q) (1− φ)
. (9)

For strongly anisotropic compounds with η ≪ 1, substituting Eq. (6) and making reverse mapping z =
√
ηz∗ and

σzz = ησ∗

zz to initial problem, from Eqs. (8) and (9) we finally obtain

σxx ≈ σ1 (1 + 2φ) , (10)

and

σzz ≈ σ1

(

η

1− φ
+

φ

ln
(

2/
√
η
)

− 1

)

. (11)
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The expression (11) for interlayer conductivity σzz consists of two parts. The first (regular) part at φ ≪ 1 only
slightly increases, similarly to σxx. This part corresponds to the usual interlayer transport with local current density
j1 almost perpendicular to conducting layers, so that it contains the small anisotropy factor σzz/σxx ≈ η. The
second (irregular) part of σzz in Eq. (11) corresponds to the strongly nonuniform current density j2: the current
flows via superconducting islands along z-axis and between these superconducting islands along conducting (x, y)
planes. This term does not have small anisotropy factor η, but contains another small factor φ, the volume fraction
of superconducting islands. Hence, at φ > η the resulting conductivity anisotropy due to spherical superconducting
islands reduces from σxx/σzz = 1/η ≫ 1 to σxx/σzz ≈ 1/φ.

Methods

For present experiments we have chosen good quality plate-like single crystals (flakes) of FeSe1−δ superconduc-
tor, grown in evacuated quartz ampoules using AlCl3/KCl flux technique in permanent temperature gradient, as
described in26. Thin single-crystal samples with a thickness typically 2-4 µm were prepared by micromechanical
exfoliation of relatively thick crystals. The structures of two types have been fabricated by the focused ion beam
(FIB) technique described in27 from selected samples (see Fig. 2 (a) and (b)). Structure of the first type, called
below as A-type and shown in Fig.2a, is an in-plane bridge of length 20µm, width 2 µm, and thickness equal to single
crystal thickness. This bridge is used to measure the intralayer resistance ρab. Structure of the second type, shown
in Fig.2b and called below as B-type, is a bridge oriented transverse to the layers, along the c-axis, with a typical
sizes La × Lb × Lc =2µm×2µm×0.2 µm. This bridge is used to measure the interlayer resistance ρc. The electrical
contacts to the crystal have been prepared by the laser evaporation of gold films before the processing by FIB. The
measurements of electrical resistance and of current-voltage (IV) characteristics have been done in the conventional
4-probe configuration. The temperature dependence of magnetic susceptibility of FeSe single crystal was obtained by
AC Measurement option of Physical Property Measurement System – 9T Quantum Design. The plate was oriented
perpendicular to external magnetic field H = 10 Oe applied at frequency 10 kHz. The demagnetizing factor N ∼ 0.5
was supposed to obtain the full Meissner effect 4πχ = −1 for a finite size plate in accordance with classical formula28.

Results and discussion

Fig.2 (c) shows the temperature dependence of resistivity in the structures of both types. The well-defined geometry
of these structures allowed us to determine the conductivity anisotropy ratio ρc/ρab and its temperature evolution,
shown in Fig.2d. At room temperature ρc/ρab ≈ 160− 180 and increases monotonically with temperature, reaching
≈ 500 at T = 12K. Note, that this increase of anisotropy goes in two stages. First, in the temperature range 300-90
K, the rate of this increase is about 0.25−0.30 K−1. Then, below 90 K, this rate increases by one order of magnitude,
achieving 2.5-3.0 K−1. Such a behavior reflects the strong decreasing of interlayer conductivity at temperature below
the structural transition.29,30 Additionally, in Fig. Fig.2d one may see a small kink at T ≈ 35K. This feature is
discussed below in detail. We suggest that it comes due to the appearance of inhomogeneous superconductivity in the
form of isolated microscopic islands. Taking into account the layered crystal structure of FeSe, in B-type structures
one may expect to observe some effects of weak superconductivity, namely, intrinsic Josephson effect, similar to
that in layered cuprate high-Tc superconductors31. Surprisingly, in our structures we have observed just opposite
picture: superconductivity is stronger in the direction perpendicular to conducting layers as compared to intralayer
superconductivity. Inset in Fig.2c demonstrates superconducting transition for both types of structures. As can
be seen, superconducting temperature in B-type structure is higher than in A-type structure. Such a behavior was
observed for all studied samples. Moreover, the critical current density in the B-type structures is also larger by an
order of magnitude.

Most interesting result was obtained during the study of the current-voltage (IV) characteristics of the bridge
structures at temperature above Tc. Typical linear R(T ) behavior in a normal metallic state corresponds to the
quadratic dependence of differential resistance on voltage because of the small Joule heating. In our case one may
expect small deviations from this square dependence caused by superconducting fluctuations which appear in IV curves
as excess conductivity at temperature close to Tc. Fig.3 (a) and (b) illustrates dV/dI as a function of V 2 at different
temperatures above Tc for the A-type and B-type structures respectively. Figs. 3c and 3d show corresponding excess
conductivity as a function of current, which was obtained by the extracting of normal state quadratic background
from the experimental IV curves. One sees that the intralayer electronic transport in A-type structure demonstrates
conventional for superconductors behavior: excess conductivity and, correspondingly, the superconducting fluctuations
disappear rapidly above bulk Tc and they are absent completely above T = 13 K. This result correlates well with
R(T ) behavior for this type structures (inset in Fig. 2c).

Quite different behaviour is observed in the interlayer electronic transport, i.e. in the B-type structure. As can be
seen from Fig. 3(b,c), the excess conductivity is much more pronounced and, more importantly, observed up to T ≈ 35
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FIG. 2. Intra- and interlayer conductivity measurements. a, The SIM image of FeSe in-plane microbridge; b, The SIM
image of FeSe microbridge (overlap structure) oriented along c-axis; c, temperature dependencies of resistivity: red curve –
structure A and blue curve – structure B. Inset shows superconducting transition for both types of structures; d, Anisotropy
of conductivity, ρc/ρab as a function of temperature.

K. Note, that R(T ) for this type of junction is strongly linear at least in the temperature range 14-25 K (see inset
in Fig.2c). It means, that simple fluctuation effects cannot cause the observed excess conductivity. The difference
between intralayer and interlayer conductivity is clearly seen in Fig.3e, where we plot the temperature dependence of
excess conductivity for both types of structures.

We see only one explanation of the observed effect: the formation of small superconducting islands with T ∗

c ≈ 35−40
K. Then at T = T ∗

c the corresponding decrease of resistance R(T ) should be anisotropic according to the above
theoretical model.

Our results are in agreement with the recent work32 where a rise in Tc more than twice was observed in point-
contacts between FeSe single crystal and Cu. Actually, authors of this work observed some excess conductivity at
temperature well above Tc. The point-contact was formed between cooper wire and the plane of FeSe crystal. It is well
known that the point-contact itself is directional with respect to the electric-field configuration33, and one may expect
that the main contribution to the point-contact resistance comes from injection along the point-contact orientation,
making point contact configuration close to our structures. Then the authors of Ref.32 probed the electronic transport
mainly along the c-axis and, therefore, observed similar effect from the filamentary gossamer superconductivity.

We observe small peculiarities already in the R(T ) dependencies which may indicate the appearance of supercon-
ducting islands. A very small but visible decrease of interlayer resistance can be noticed at T ≈ 42−45 K as shown in
Fig. 4(a). This effect is more pronounced in the derivative curve, dR/dT (T ), shown in the inset to Fig. 4(a). Note,
that this feature is completely absent in the intralayer resistance. As one can see in the inset in Fig.2(d), at nearly
the same temperature some decrease of anisotropy is also observed.

One of the best ways to detect the existence of small volume fraction of superconductivity is the measurement
of magnetic susceptibility. In the present work we also measured the magnetic properties of studied crystals. The
temperature dependence of the real part of magnetic susceptibility 4πχ shown in Fig. 4 (b) demonstrates a negative
deviation in the whole temperature range. At high temperatures it decreases almost linearly then bends down at
approximately 50 K which can be seen more clearly in double logarithmic scale shown in the Inset to Fig. 4 (b),
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FIG. 3. Excess conductivity for two perpendicular current directions. a, Differential resistance dV/dI as a function
of the square of voltage, V 2, at different temperatures above Tc for A-type structure, i.e. for intralayer transport. b, The same
as (a) but for B-type structure, i.e. for interlayer transport. c, Excess differential conductivity as a function of current for
A-type structure measured at different temperatures above Tc. d, The same as in (c) but for B-type structure. e, Temperature
dependence of excess conductivity: red square symbols for the B-type structure, and blue circle symbols for the A-type structure.
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FIG. 4. Temperature dependence of the volume fraction of superconducting islands. a, Temperature dependence
of interlayer resistance in the temperature range 30-60 K demonstrating small decrease of resistance at T ≈ 45 K. Inset shows
the derivative of this curve. b, The temperature dependence of real part of magnetic susceptibility of FeSe single crystal. Main
panel contains initial 4πχ curve obtained for demagnetizing factor N ∼ 0.5, and the inset represents the same curve in double
logarithmic scale to highlight the negative deviation at high temperatures. The line is a guide for an eye. c, The temperature
dependence of superconducting volume fraction φ obtained from magnetic (closed circles) and from transport (open circles)
measurements. In the latter case, the volume fraction φ of superconducting phase was calculated from equation (11).

and finally drops to absolute diamagnetic value 4πχ = −1 below superconducting phase transition TC = 9 K. The
rough estimation of superconducting phase portion φ can be done by subtraction of linear function from 4πχ(T )
dependence assuming 100% of superconducting phase at low temperatures T ≪ TC . The temperature dependencies of
superconducting phase percentage obtained from magnetic (closed circles) and transport (open circles) measurements
are shown in Fig. 4 (c). In the latter case, the volume fraction φ of superconducting phase was calculated from
Eq. 11 using the experimental data on conductivity anisotropy, shown in Fig. 2d. Fig. 4(c) shows that φ is very
small and decreases monotonically with increasing temperature. It is distinguishable below 50 K and amounts 10−4

at this temperature. At lower temperatures it is somewhat higher and comprises 10−2 above Tc. The shape of φ(T )
dependence obtained from magnetic measurements is similar to that from transport measurements (see Fig. 4c).

Conclusions

In this paper we report the discovery of inhomogeneous superconductivity in bulk FeSe1−δ at ambient pressure and at
temperature T ∗

c ∼ 35K, which is 5 times higher than its zero-resistance superconducting transition temperature Tc ≈
8K known before24. This superconductivity appears in the form of microscopic isolated superconducting islands and
does not lead to zero electric resistance, but reveals itself in anisotropic resistivity drop and in magnetic susceptibility.
Therefore, we called it gossamer inhomogeneous superconductivity. This discovery provides a clue to understand the
nature of unusual superconducting properties of FeSe. For example, the pressure-temperature phase diagram of FeSe
contains interplay between different electronic ordering and superconductivity with Tc ∼ 35K at pressure 6-8GPa,21–23

which is the same as the transition temperature T ∗

c of gossamer inhomogeneous superconductivity reported above.
This coincidence is not occasional but suggests that the external pressure, by damping other types of electronic
ordering, increases the volume fraction of superconducting regions, so that they become connected at pressure 6-
8GPa. However, even at ambient pressure in FeSe there are microscopic superconducting islands without long-range
coherence between these islands and, hence, without zero resistance.
Complementary, we proposed and described a general property: if inhomogeneous superconductivity in a anisotropic

conductor first appears in the form of isolated superconducting islands, it reduces electric resistivity anisotropically
with maximal effect along the least conducting axis. This property provides a simple and very general tool to detect
inhomogeneous superconductivity in various anisotropic compounds. Namely, this method is applicable to almost all
high-temperature superconductors, which have layered anisotropic crystal structure. The above study of FeSe is a nice
illustration of this general tool. The anisotropic resistivity drop during the superconductivity onset was also reported
in other layered superconductors, e.g. in organic superconductors (TMTSF)2PF6

17,18 and (TMTSF)2ClO4
19, and in

even in the cuprate high-Tc superconductor YBa2Cu4O8 (see Fig. 2 in Ref.20). Our model and Eq. (11) explains these
observations and suggests inhomogeneous superconductivity onset also in these compounds. We believe that similar
experimental test for inhomogeneous superconductivity can be performed in many other anisotropic superconductors,
which will help to understand the mechanisms of high-temperature superconductivity.

Acknowledgements



8

P.G. thanks Dmitrii Lyubshin for useful discussion. This work was supported in part by the Ministry of Education
and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISiS (#
K2-2015-075, # K4-2015-020 and # K2-2016-003) and by Act 211 Government of the Russian Federation, contract
# 02.A03.21.0006. Theoretical part was supported by RSCF # 16-42-01100.

Author contributions

A.A.S., A.O. and A.F. prepared the samples and performed the electronic transport measurements. P.G. proposed
the theoretical description of the observed transport properties. O.V., A.S., D.Ch. and A.V. grew the crystals and
performed the magnetic susceptibility measurements. All authors contributed to discussions.

∗ grigorev@itp.ac.ru
1 Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S., & Zaanen, J., Nature 518, 179 (2015).
2 Si, Qimiao, Yu, Rong & Abrahams, Elihu, Nature Reviews Materials 1, 16017 (2016); DOI:10.1038/natrevmats.2016.17.
3 Kresin, V.Z., Ovchinnikov, Yu.N., & Wolf, S.A. Inhomogeneous superconductivity and the “pseudogap” state of novel
superconductors, Physics Reports 431, 231 – 259 (2006).

4 Laughlin, R.B. Gossamer superconductivity, Philosophical Magazine, 86, 1165–1171 (2006).
5 Iguchi, I., Yamaguchi, T. & Sugimoto, A. Diamagnetic activity above Tc as a precursor to superconductivity in
La2−xSrxCuO4 thin films, Nature 412, 420-423 (2001).

6 Bergemann, C., Tyler, A.W., Mackenzie, A.P., Cooper, J.R., Julian, S.R. & Farrell, D.E. Superconducting magnetization
above the irreversibility line in Tl2Ba2CuO6+δ, Phys. Rev. B 57, 14387–14396 (1998).

7 Carretta, P., Lascialfari, A., Rigamonti, A., Rosso, A. & Varlamov, A. Superconducting fluctuations and anomalous dia-
magnetism in underdoped YBa2Cu3O6+x from magnetization and 63Cu NMR-NQR relaxation measurements Phys. Rev. B
61, 12420–12426 (2000).

8 Lascialfari, A. et al. Anomalous doping dependence of fluctuation-induced diamagnetism in Y1−xCaxBa2Cu3Oy supercon-
ductors, Phys. Rev. B 65, 144523 (2002).

9 S. H. Pan, S.H., et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x. Nature 413,
282–285 (2001).

10 Lang, K. M. et al. Imaging the granular structure of high-TC superconductivity in underdoped Bi2Sr2CaCu2O8+δ. Nature
415, 412–416 (2002).

11 Gomes, K.K., et al. Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ. Nature
447, 569–572 (2007).

12 Wise, W.D. et al. Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor. Nature Physics 5,
213–216 (2009).

13 Campi, G., et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature
525, 359–362 (2015)

14 Gofryk, K. et al. Local inhomogeneity and filamentary superconductivity in Pr-doped CaFe2As2. Phys. Rev. Lett. 112,
047005 (2014).

15 Martin, I., Podolsky, D & Kivelson, S.A. Enhancement of superconductivity by local inhomogeneities. Phys. Rev. B 72,
060502(R) (2005).

16 Jian-Feng Ge, J-F., et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nature Materials 14,
285–289 (2015).

17 N. Kang, et al. Domain walls at the spin-density-wave endpoint of the organic superconductor (TMTSF)2PF6 under pressure.
Phys. Rev. B 81, 100509(R)(2010).

18 Narayanan, A., Kiswandhi, A., Graf, D., Brooks, J. & Chaikin, P. Coexistence of Spin Density Waves and Superconductivity
in (TMTSF)2PF6. Phys. Rev. Lett. 112, 146402 (2014).

19 Ya. A. Gerasimenko, Ya.A., et al. Coexistence of superconductivity and spin-density wave in (TMTSF)2ClO4: Spatial
structure of the two-phase state. Phys. Rev. B 89, 054518 (2014).

20 Hussey, N.E., Nozawa, K., Takagi, H., Adachi, S. & Tanabe, K. Anisotropic resistivity of YBa2Cu4O8: Incoherent-to-metallic
crossover in the out-of-plane transport. Phys. Rev. B 56, R11423–R11426 (1997).

21 Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T. & Takano, Y. Superconductivity at 27K in tetragonal FeSe under
high pressure. Appl. Phys. Lett. 93, 152505 (2008).

22 Medvedev, S., et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7K under pressure.
Nature Materials 8, 630–633 (2009).

23 J. P. Sun, J.P., et al. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in
FeSe. Nat. Commun. 7, 12146 (2016).

24 Hsu, F-C et al. Superconductivity in the PbO-type structure α-FeSe. PNAS 105, 14262 (2008).
25 Torquato, S. Random Heterogeneous Materials, Springer, 2001.
26 Chareev, D., et al. Single crystal growth and characterization of tetragonal FeSe1−x superconductors. Cryst.Eng.Comm.

mailto:grigorev@itp.ac.ru


9

15(10), 1989–1993 (2013).
27 Latyshev, Yu.I., et al. Interlayer tunnelling spectroscopy of the charge density wave state in NbSe3. J. Phys. A: Math. Gen.

36, 9323–9335 (2003).
28 Goldfarb, R.B., Lelental, M. &Thompson, C.A. Alternating-field susceptometry and magnetic susceptibility of superconduc-

tors in Magnetic susceptibility of superconductors and other spin systems Ed. Hein R A, Francavilla T L and Liebenberg D
H (New York : Plenum) pp 49-80 (1991).

29 McQueen, T.M. et al. Tetragonal-to-Orthorhombic Structural Phase Transition at 90 K in the Superconductor Fe1.01Se.
Phys. Rev. Lett. 103, 057002 (2009).

30 Terashima, T., et al. Pressure-Induced Antiferromagnetic Transition and Phase Diagram in FeSe. J. Phys. Soc. Jpn. 84,
063701 (2015).

31 Kleiner, R. & Muller, P. Intrinsic Josephson effects in high-Tc superconductors. Phys. Rev. B 49, 1327–1341 (1994).
32 Naidyuk, Yu.G., Fuchs, G., Chareev, D.A. & Vasiliev, A.N. Doubling of the critical temperature of FeSe observed in point

contacts. Phys. Rev. B 93, 144515 (2016).
33 Sinchenko, A.A. & Monceau, P. Charge-density-wave gaps of NbSe3 measured by point-contact spectroscopy in different

crystallographic orientations. Phys. Rev.67, 125117 (2003).



ar
X

iv
:1

61
0.

06
11

7v
1 

 [
co

nd
-m

at
.s

up
r-

co
n]

  1
9 

O
ct

 2
01

6
1

Supplementary Material to ”Gossamer bulk high-temperature superconductivity in FeSe”

A. Derivation of the effective conductivity in the Maxwell’s approximation for heterogeneous media

with spherical granules

The effective conductivity σe of heterogeneous media, where small granules of conductivity σ2 are embedded in a
media of conductivity σ1, can be easily derived in the effective-medium Maxwell’s approximation (see §18.1.1 of Ref.
[1]). In this approximation a heterogeneous media is replaced by a uniform media of effective conductivity σe such
that their electric potentials at large distance are the same. In the Maxwell’s approximation the interaction between
rare small granules is neglected, and in the external uniform electric field E0 each small granule of radius Ri polarizes
and acquires an additional electric dipole moment di proportional to its volume and to the strength of the field E0:

di = β12E0R
3
i , (1)

where (see §17.1.1 of Ref. [1])

β12 = (σ2 − σ1) / (σ2 + 2σ1) (2)

is the ”polarizability” of a sphere. Each such dipole moments changes the electric potential outside the granule by

∆ϕi = dir/r
3, (3)

so that the total change of electric potential far away from the sphere R0, i.e. at r ≫ R0 is given by the sum of all
granules inside inhomogeneous sphere of radius R0:

∆ϕt =
∑

i

di (r − ri)

|r − ri|
3 ≈

σ2 − σ1

σ2 + 2σ1

φR3
0

r2
E0. (4)

On the other hand, a single isotropic sphere of the radius R0 and conductivity σe inside a media of conductivity σ1

in a uniform field E0 creates an additional potential

∆ϕt =
σe − σ1

σe + 2σ1

R3
0

r2
E0. (5)

Comparing Eqs. (4) and (5) gives

σe − σ1

σe + 2σ1
= φ

σ2 − σ1

σ2 + 2σ1
, (6)

which coincides with Eq. (1) of the main text.

B. Mapping of conductivity problem in anisotropic media to isotropic

The electrostatic equation of continuity in Cartesian coordinates can be written as

−∇j = σxx

∂2V

∂x2
+ σyy

∂2V

∂y2
+ σzz

∂2V

∂z2
= 0. (7)

By the change of coordinates

x∗ = x, y∗ =
√

σyy/σxxy, z∗ =
√

σzz/σxxz (8)

and by the simultaneous conductivity change σ∗

zz = σ∗

yy = σ∗

xx = σxx it transforms to the electrostatic continuity
equation for isotropic media:

−∇j = σxx

(

∂2V

∂x2
∗

+
∂2V

∂y2
∗

+
∂2V

∂z2
∗

)

= 0. (9)

Hence, the initial problem of conductivity in anisotropic media with some boundary conditions can be mapped to the
conductivity problem in isotropic media with new boundary conditions, obtained from initial boundary conditions by
the anisotropic dilatation in Eq. (8).

[1] Torquato, S. Random Heterogeneous Materials, Springer, 2001.
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