
August 23, 2019 10:40 112-IJFCS 1940034

International Journal of Foundations of Computer Science

Vol. 30, Nos. 6 & 7 (2019) 1177–1196
c© World Scientific Publishing Company

DOI: 10.1142/S0129054119400343

Reset Complexity of Ideal Languages Over a Binary Alphabet

Marina Maslennikova

Institute of Natural Sciences and Mathematics
Ural Federal University, 620000 Ekaterinburg, Russia

maslennikova.marina@gmail.com

Received 16 November 2017

Accepted 5 June 2018
Communicated by C. Câmpeanu and G. Pighizzini

We prove PSPACE-completeness of checking whether a given ideal language serves

as the language of reset words for some automaton with at most four states over a
binary alphabet. We compare the reset complexity and the state complexity for languages

related to slowly synchronizing automata.

Keywords: Ideal language; synchronizing automaton; reset word; reset complexity; state
complexity; PSPACE-completeness.

1. Introduction

Regular languages admit compact representations by different tools: deterministic

and nondeterministic finite automata, syntactic monoids, regular expressions, etc.

Each of these tools gives rise to the corresponding complexity measure of regular

languages. Along with these general tools, there are more specific devices for repre-

senting regular languages from some special classes. One of such classes is formed by

ideal regular languages. A language I ⊆ Σ∗ is called a two-sided ideal (or simply an

ideal) if I is non-empty and Σ∗IΣ∗ ⊆ I. In what follows we consider only languages

which are regular, thus we drop the adjective “regular”. Thus, the expression “ideal

language” (or simply “ideal”) always means a regular two-sided ideal language.

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA), where Q is the

state set, Σ stands for the input alphabet, and δ : Q× Σ→ Q is the totally defined

transition function defining the action of the letters in Σ on Q. The function δ

is extended uniquely to a function Q × Σ∗ → Q, where Σ∗ stands for the free

monoid over Σ. The latter function is still denoted by δ. In the theory of formal

languages the definition of a DFA usually includes the initial state q0 ∈ Q and

the set F ⊆ Q of terminal states. We use these ingredients when dealing with

automata as devices for recognizing languages. A language L ⊆ Σ∗ is recognized by

an automaton A = 〈Q,Σ, δ, q0, F 〉 if L = {w ∈ Σ∗ | δ(q0, w) ∈ F}. We denote by

L[A] the language recognized by the automaton A . We also use standard concepts

1177

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

http://dx.doi.org/10.1142/S0129054119400343

August 23, 2019 10:40 112-IJFCS 1940034

1178 M. Maslennikova

of the theory of formal languages and computational complexity theory such as

regular language, minimal automaton etc. [12].

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗ whose

action leaves the automaton in one particular state no matter at which state in Q it

is applied: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any word w with this property is said

to be reset for the DFA A . The minimum length of reset words for A is called the

reset threshold of A and is denoted by rt(A). For the last 50 years synchronizing

automata have received a great deal of attention. For a brief introduction to the

theory of synchronizing automata we refer the reader to the survey [14].

In the present paper we focus on some complexity aspects of the theory of syn-

chronizing automata. We denote by Syn(A) the language of reset words for a given

automaton A . It is well known that Syn(A) is regular [14]. Furthermore, it is an

ideal in Σ∗. On the other hand, every regular ideal language I serves as the language

of reset words for some automaton. For instance, the minimal automaton recogniz-

ing I is synchronized exactly by words from I [8]. Thus, synchronizing automata can

be considered as a special representation of ideal languages. Effectiveness of such a

representation was addressed in Ref. [8]. The reset complexity rc(I) of an ideal lan-

guage I is the minimal possible number of states in a synchronizing automaton A

such that Syn(A) = I. Every such automaton A is called a minimal synchronizing

automaton (for brevity, MSA).

From descriptive complexity point of view it is interesting to compare the reset

complexity of an ideal language with the classical state complexity. The state

complexity sc(I) of a regular language I is the number of states in the minimal

automaton AI recognizing I. For every ideal language I, we have rc(I) ≤ sc(I) [8].

Moreover, for each n ≥ 3, there exists a language In such that rc(In) = n and

sc(In) = 2n−n [8]. Therefore, the representation of an ideal language by means of a

synchronizing automaton can be exponentially more succinct than the “traditional”

representation via the minimal automaton. This resembles the well-known property

of nondeterministic finite automata (for brevity, NFAs): for each n ≥ 3, there is

an n-state NFA N such that every DFA recognizing the same language as N has

exactly 2n states [10, 11].

Another source of motivation for studying representations of ideal languages by

means of synchronizing automata comes from the famous Černý’s conjecture [3].

Černý conjectured that every synchronizing automaton with n states possesses a

reset word of length at most (n − 1)2. Let ||I|| be the minimal length of words in

I. The Černý conjecture holds true if and only if rc(I) ≥
√
||I||+ 1 for every ideal

I. The latter inequality would provide the desired quadratic upper bound on the

reset threshold of a synchronizing automaton. Even a lower bound rc(I) ≥
√
||I||
C

for some constant C would be a major breakthrough.

Let I be an ideal regular language over Σ with rc(I) = n. The latter equality

means that there exists some n-state DFA B such that Syn(B) = I, and B is

an MSA for I. The following question arises: how hard is it to check that a given

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

Reset Complexity of Ideal Languages Over a Binary Alphabet 1179

synchronizing DFA B is an MSA for a given ideal I (I is assumed to be given

by a synchronizing DFA A with Syn(A) = I)? Another question related to the

previous one is the following: how hard is it to verify the inequality rc(I) ≤ ` for

a given ideal I and a given ` ∈ N? The inequality rc(I) ≤ ` means that there

exists a synchronizing DFA B with at most ` states such that Syn(B) = I. The

aforementioned questions are trivial for automata over a unary alphabet, thus in

what follows we deal with alphabets that have at least two letters. The problem

of checking the equality Syn(B) = I is equivalent to the problem of checking the

equality Syn(A) = Syn(B) for two given synchronizing automata A and B. The

complexity of the latter problem has been partially studied in Ref. [9]. It is well

known that the equality of the languages recognized by two given DFAs can be

checked in time polynomial of the size of automata. However, the problem of check-

ing the equality of the languages of reset words of two synchronizing DFAs turns

out to be PSPACE-complete [9]. Recall that the problem of checking the equality

of languages recognized by two given NFAs is PSPACE-complete as well [13]. In

this context we again find that synchronizing automata share some properties of

nondeterministic finite automata.

We state formally the SYN-EQUALITY problem:

– Input: synchronizing automata A and B.

– Question: is Syn(A) = Syn(B)?

In Ref. [9] SYN-EQUALITY has been proved to be PSPACE-complete. In the

present paper we provide a more transparent proof of PSPACE-hardness of this

problem. In particular, it allows us to strengthen the result of [9] concerning the

problem of evaluating the reset complexity of a given ideal language.

We state formally the RESET-INEQUALITY problem:

– Input: synchronizing DFA A over Σ, ` ∈ N.

– Question: is rc(Syn(A)) ≤ `?

In Ref. [9] RESET-INEQUALITY has been shown to be PSPACE-complete

for ` = 3 and enough large input alphabet (with at least five letters). In the present

paper we significantly strengthen this result and prove that RESET-INEQUALITY,

restricted to a binary alphabet, remains PSPACE-complete even for ` = 4. Note

that RESET-INEQUALITY is trivial for DFAs over a unary alphabet and, further-

more, RESET-INEQUALITY can be solved in polynomial of the size of A time for

` = 1 and ` = 2 in the general case [9]. So the only question that remains open

concerns the complexity of RESET-INEQUALITY for ` = 3 for the binary alphabet

case.

Further we study ideal languages In which are certificates for exponential gap

between the state complexity and the reset complexity, that is rc(In) = n and

sc(In) = 2n−n. One of such examples has been presented in Ref. [8] and, actually,

it is provided by the construction of Černý’s automaton Cn. Namely, it is taken

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

1180 M. Maslennikova

as In = Syn(Cn). Let us note that the DFA Cn is one of well-known examples of

“slowly” synchronizing automata, that is automata whose reset threshold is close to

(n−1)2. The following question arises: does slow synchronization of a given DFA An

guarantee that the state complexity of Syn(An) is exponentially smaller than the

reset complexity of this language? We study several series of slowly synchronizing

automata known from [1] and prove that the considered automata are certificates

for an exponential gap between the state complexity and the reset complexity of the

corresponding ideal language. Further it would be interesting to calculate another

complexity measures of languages of reset words for such automata (nondetermin-

istic state complexity, syntactic complexity, etc.) and compare them with known

values of reset and state complexity.

The paper is organized as follows. In Sec. 2, we introduce some definitions

and preliminary results. In Sec. 3, we provide a modified proof of PSPACE-

hardness of SYN-EQUALITY. Section 4 contains the main result about PSPACE-

completeness of the problem RESET-INEQUALITY for the binary alphabet case.

In Sec. 5, we compare the state complexity and the reset complexity of languages

related to slowly synchronizing automata.

2. Preliminaries

A standard tool for finding the language of reset words of a given DFA K = 〈Q, δ,Σ〉
is the power automaton P(K). Its state set is the set Q of all nonempty subsets of

Q, and the transition function is defined as a natural extension of δ to the set Q×Σ

(the resulting function is also denoted by δ), namely, δ(S, c) = {δ(q, c) | q ∈ S} for

S ⊆ Q and c ∈ Σ. If we take the set Q as the initial state and singletons as final

states in P(K), then we obtain an automaton recognizing Syn(K). It is easy to see

that if all singletons are merged into a unique sink state s, the resulting automaton

still recognizes Syn(K). Throughout the paper the term power automaton and the

notation P(K) refer to this modified version.

A state s of a DFA A = 〈Q,Σ, δ〉 is said to be a sink if δ(s, a) = s for all a ∈ Σ.

If the transition function δ is clear from the context, we write q . w instead of δ(q, w)

for q ∈ Q and w ∈ Σ∗. This notation extends naturally to any subset H ⊆ Q by

putting H .w = {δ(q, w) | q ∈ H}.
Recall that a word u ∈ Σ∗ is a prefix (suffix or factor, respectively) of a word w

if w = us (w = tu or w = tus, respectively) for some t, s ∈ Σ∗. A reset word for a

DFA A is called minimal if none of its proper prefixes nor suffixes is reset.

Due to [9, Corollary 1] we have the following proposition.

Proposition 1. SYN-EQUALITY is in PSPACE.

To prove that SYN-EQUALITY is a PSPACE-complete problem we reduce the

following well-known PSPACE-complete problem to the complement of SYN-

EQUALITY. This problem deals with checking emptiness of the intersection of

languages recognized by DFAs from a given collection [6].

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

Reset Complexity of Ideal Languages Over a Binary Alphabet 1181

FINITE AUTOMATA INTERSECTION

– Input: an integer n and n DFAs Mi = 〈Qi,Σ, δi, qi, Fi〉, for i = 1, . . . , n.

– Question: is
⋂
i L[Mi] 6= ∅?

Since FINITE AUTOMATA INTERSECTION is known to be PSPACE-

complete even for the binary alphabet case, we may assume that |Σ| = 2, in partic-

ular, let Σ be {a, b}.

3. PSPACE-Hardness of SYN-EQUALITY

The proof of PSPACE-hardness of SYN-EQUALITY is based on the same idea

as the proof from [9]. However, our modified construction allows us to reduce the

number of letters from 5 to 4. We provide a sketch of the proof of PSPACE-

hardness for the sake of completeness.

Given an instance of FINITE AUTOMATA INTERSECTION, we can assume

without loss of generality that each initial state qi has no incoming edges and qi /∈ Fi.
Indeed, excluding the case for which the empty word ε is in L[Mi] we can always

build a DFA M ′i = 〈Q′i,Σ, δ′i, q′i, Fi〉, which recognizes the same language as Mi,

such that the initial state q′i has no incoming edges. This can easily be achieved

by adding a new initial state q′i to the state set Qi and defining the transition

function δ′i by the rule: δ′i(q
′
i, c) = δi(qi, c) for all c ∈ Σ and δ′i(q, c) = δi(q, c) for all

c ∈ Σ, q ∈ Qi. Furthermore, we may assume that the sets Qi, for i = 1, . . . , n, are

pairwise disjoint. Also we can suppose that any letter from Σ does not belong to⋂
i L[Mi]. Otherwise, we add a new initial state q′′i to each M ′i and put δi(q

′′
i , c) = q′i

for all c ∈ Σ. This assumption will be of use in Sec. 3.

To build an instance of SYN-EQUALITY from the DFAs Mi, i = 1, . . . , n, we

construct a DFA A = 〈Q,∆, ϕ〉 with Q =
⋃n
i=1Qi ∪ {s, h}, where s and h are new

states not belonging to any Qi. We add two new letters x and z to the alphabet Σ

and let ∆ = Σ ∪ {x, z}. The transition function ϕ of the DFA A is defined by the

following rules:

ϕ(q, c) = δi(q, c) for all i = 1, . . . , n, q ∈ Qi and c ∈ Σ;

ϕ(q, x) = qi for all i = 1, . . . , n, q ∈ Qi;

ϕ(q, z) = s for all i = 1, . . . , n, q ∈ Fi;

ϕ(q, z) = h for all i = 1, . . . , n, q ∈ Qi\Fi;

ϕ(h, c) = s for all c ∈ ∆;

ϕ(s, c) = s for all c ∈ ∆.

The resulting automaton A is shown schematically in Fig. 1. The action of

letters from Σ on the states p ∈ Qi is not shown. Denote by Gi the set Qi\(Fi∪{qi}).
All the states from the set Gi are shown as the node labeled by Gi. All the states

from the set Fi are shown as the node labeled by Fi.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

1182 M. Maslennikova

Fig. 1. Automaton A .

The constructed automaton is synchronizing, for example, by the word zz. It can

be easily seen that by the definition of the transition function ϕ we get ϕ(Q,w) ∩
Qi 6= ∅ if and only if w ∈ (Σ ∪ {x})∗. Consider the language

I = (Σ ∪ {x})∗z∆+.

From the observations above and the definition of ϕ we obtain Lemma 2.

Lemma 2.
⋂n
i=1 L[Mi] = ∅ if and only if Syn(A) = I.

Proof. Let
⋂n
i=1 L[Mi] = ∅. It is easy to check that if

⋂n
i=1 L[Mi] = ∅, then

Syn(A) ⊆ I. The opposite inclusion I ⊆ Syn(A) follows easily from the con-

struction of A . Assume now that the equality Syn(A) = I takes place, and⋂n
i=1 L[Mi] 6= ∅, thus there is some w′ ∈

⋂n
i=1 L[Mi]. By the definition of ϕ we get

that the word w = xw′z is a reset word for A . However, w /∈ I. So we come to a

contradiction.

Now we build a 3-state automaton B = 〈P,∆, τ〉 (see Fig. 2). Its state set is

P = {p1, p2, s′}, where s′ is a unique sink state. It is easy to verify that I serves as

the language of reset words for B. Furthermore, I does not serve as the language

of reset words for a synchronizing automaton of size at most two over the same

alphabet ∆. So B is an MSA for I and rc(Syn(B)) = 3.

Lemma 3. Syn(B) = I.

Finally, by Lemmas 2 and 3, we have the following claim.

Corollary 4.
⋂n
i=1 L[Mi] = ∅ if and only if Syn(A) = Syn(B).

Fig. 2. Automaton B.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

Reset Complexity of Ideal Languages Over a Binary Alphabet 1183

4. PSPACE-Completeness of RESET-INEQUALITY

We have reduced the problem FINITE AUTOMATA INTERSECTION to the

complement of SYN-EQUALITY. By construction of DFAs A and B, we have

∆ = {z, a, b, x}. Now we are going to study the complexity of checking the inequal-

ity rc(I) ≤ ` for the binary alphabet case. First we build DFAs C = 〈C, {µ, λ}, ϕ2〉
and D = 〈D, {µ, λ}, τ2〉 over a binary alphabet {µ, λ} with unique sink states

ζ1 and ζ2 respectively. It will turn out that the constructions of C and D pre-

serve the equality of reset languages. More precisely, Syn(A) = Syn(B) if and

only if Syn(C) = Syn(D). Let J = Syn(C). We will prove that rc(J) > 4 if and

only if
⋂n
i=1 L[Mi] 6= ∅. It allows to obtain the desired result about PSPACE-

completeness of RESET-INEQUALITY for the binary alphabet case.

In order to construct C = 〈C, {µ, λ}, ϕ2〉 and D = 〈D, {µ, λ}, τ2〉 we apply a

recoding technique which has been used in Refs. [1, 7, 9]. Namely, we define mor-

phisms h : {λ, µ}∗λ → ∆∗ and h : ∆∗ → {λ, µ}∗λ preserving the property of being

a reset word for the corresponding automaton. Since the definitions of morphisms

differ from those described in Ref. [9], we present them here. Let d1 = z, d2 = a,

d3 = b and d4 = x. We put h(µkλ) = dk+1 for k = 0, . . . , 3 and h(µkλ) = d4 = x for

k ≥ 4. Every word from the set {λ, µ}∗λ can be uniquely factorized by words µkλ,

k ≥ 0, whence the mapping h is totally defined. We also consider the morphism

h : ∆∗ → {λ, µ}∗λ defined by the rule h(dk) = µk−1λ.

Now we take the constructed above DFA B = 〈P,∆, τ〉 with the state set

P = {p1, p2, s′}. We build D = 〈D, {µ, λ}, τ2〉 with a unique sink state ζ2.

We associate each state pi of the automaton B with a 4-element set of states Pi =

{pi,1, . . . , pi,4} of the automaton D . Namely, the states pi,2, pi,3, pi,4 are copies of the

state pi associated with pi,1. The action of the letter µ is defined in the following way:

τ2(pi,k, µ) = pi,k+1 for k ≤ 3, and τ2(pi,4, µ) = pi,4. We put D = P1∪P2∪{ζ2}, where

ζ2 is a unique sink state, P1 = {p1,1, p1,2, p1,3, p1,4}, P2 = {p2,1, p2,2, p2,3, p2,4}. The

action of the letter λ is defined by the rules:

– if τ(pi, dk) = s′, then τ2(pi,k, λ) = ζ2;

– if τ(pi, dk) = pj , then τ2(pi,k, λ) = pj,1.

The latter rule means that if there is a transition from pi to pj labeled by the

letter dk, then there is a transition from pi,1 to pj,1 labeled by the word µk−1λ.

We build analogously C = 〈C, {µ, λ}, τ1〉 with a unique sink state ζ1. Every

state ft ∈ Fi from A is associated with the set Pft = {ft,1, . . . , ft,4} of states

of C . We associate states qi, h and every gj ∈ Gi of A with 4-element sets

Pqi = {qi,1, . . . , qi,4}, H = {h1, h2, h3, h4} and Pgj = {gj,1, . . . , gj,4} of states of C

respectively. Finally, we put C =
⋃
ft,gj

(Pft ∪ Pgj) ∪ Pqi ∪H ∪ {ζ1}, where ζ1 is a

unique sink state. The action of the transition function τ1 is defined similarly to

the definition of τ2.

Figure 3 illustrates the automata D (left) and C (right). The actions of µ and

λ are shown by solid and dashed arrows, respectively. For compactness, we do not

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

1184 M. Maslennikova

Fig. 3. The automata D (left) and C (right).

show some transitions labeled by λ in C . Nevertheless, the action of λ is defined on

each state in C . The resulting automata C and D have 4(|Q| − 1) + 1 and 9 states

respectively, where |Q| is the cardinality of the state set of A .

Lemma 5. Syn(A) = Syn(B) if and only if Syn(C) = Syn(D).

Proof. It is convenient to organize the DFA D as a table. The set Pi is called the

i-th column of the set D. For each k = 1, . . . , 4, the set Rk = {p1,k, p2,k} is called

the k-th row of the set D. The DFA C will be viewed as a table as well. Sets Pft ,

Pgj , Pqi , H are columns. One can easily write the k-th row for each k = 1, . . . , 4.

Assume that Syn(A) 6= Syn(B). From the proof of Lemma 2 it follows that

the word w = xw′z with w′ ∈
⋂
i L[Mi] is reset for A and it is not reset for B.

Thus, h(w) ∈ Syn(C) and h(w) 6∈ Syn(D) since τ2(p1,1, h(w)) = p2,1 6= ζ2. So

Syn(C) 6= Syn(D).

Assume now that Syn(A) = Syn(B). We show that every minimal reset word of

C is reset for D and every minimal reset word of D is reset for C . Let u be a minimal

reset word of C . Every word u ∈ {µ}∗ is not in Syn(C) since µ brings each column

to its subset. Thus, u contains some factor from {λ}+. The automaton C possesses

a unique sink state ζ1. Hence C is synchronized to ζ1. Furthermore, all transitions

leading to ζ1 are labeled by λ, and ζ1 is fixed by µ and λ. Thus if u does not end

up with λ, then it is not a minimal reset word. We have u ∈ {λ, µ}∗λ, i.e., u = vλ

for some v ∈ {λ, µ}∗. Let us note that λ2 appears in u as a factor (otherwise, u /∈
Syn(C)). Indeed, if u = µk1λµk2λ . . . µksλ then u maps the state set of C to a subset

of the 1-st row containing a state different from ζ1, so u 6∈ Syn(C). Let us assume

that the last letter of v is λ and λ2 is not a factor of v, so u = µk1λµk2λ . . . µksλ2

where ki 6= 0 for i > 1. Since Syn(A) = Syn(B) and
⋂
i L[Mi] = ∅, thus the

image of the state set of C under the action of µk1λµk2λ . . . µksλ contains qr,1 or

gr,1 for some r (since µk1λ maps qi,4 to qi,1 identifying an initial state in A). So

u /∈ Syn(C) since λ does not map qr,1 or gr,1 to ζ1. Therefore, λ2 is a factor of v,

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

Reset Complexity of Ideal Languages Over a Binary Alphabet 1185

then by the definition of the transition functions of C and D we have u ∈ Syn(C)

and u ∈ Syn(D). So the inclusion Syn(C) ⊆ Syn(D) takes place. The opposite

inclusion Syn(D) ⊆ Syn(C) is verified analogously.

Lemma 5 implies PSPACE-completeness of the problem SYN-EQUALITY

restricted to a binary alphabet.

Theorem 6 (Theorem 4, [9]). SYN-EQUALITY restricted to a binary alphabet

case is PSPACE-complete.

As a corollary, we immediately obtain the following statement.

Proposition 7 (Proposition 1, [9]). Given an integer ` > 0 and a synchronizing

DFA A . The problem of checking the inequality rc(Syn(A)) ≤ ` is in PSPACE.

So we reduced FINITE AUTOMATA INTERSECTION to the complement of

SYN-EQUALITY restricted to a binary case alphabet as follows. For an arbitrary

instance of FINITE AUTOMATA INTERSECTION one may build the correspond-

ing automata C and D over a binary alphabet {λ, µ} such that
⋂n
i=1 L[Mi] 6= ∅ if

and only if Syn(C) = Syn(D).

The set of all words synchronizing a fixed subset H ⊆ D of the state set of D is

defined as follows:

R(H) = {v ∈ {λ, µ}∗ |H . v = {ζ2}}.

Since ζ2 is a unique sink state in D , every reset word for D maps every subset of

D to {ζ2}. Let us note that

R({p2,1}) = R({p2,2}) = R({p2,3}) = R({p2,4});

R({p1,2}) = R({p1,3}) = R({p1,4}).

These equalities imply that the language of reset words of D ′ (defined on Fig. 4)

coincides with the language of reset words of D . Indeed, due to the equalities above

we can merge states p2,1, p2,2, p2,3, p2,4 into a unique state p2 and merge states

p1,2, p1,3, p1,4 into a unique state p0. Solid arrows still denote the action of µ while

dashed arrows stand for λ. In what follows we consider the DFA D ′ instead of D .

Fig. 4. The automaton D ′.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

1186 M. Maslennikova

Lemma 8. Let J = Syn(C). The equality
⋂n
i=1 L[Mi] = ∅ takes place if and only

if rc(J) ≤ 4.

Proof. Let E = 〈P, {λ, µ}, γ〉 be an MSA for J . Assume that
⋂n
i=1 L[Mi] = ∅. By

Lemma 2 we get that Syn(A) = Syn(B) = I with I = (Σ∪{x})∗z∆+. By Lemma 5

we have J = Syn(C) = Syn(D ′). Let us note that λ3 ∈ Syn(D ′). Furthermore,

λ, λ2 6∈ Syn(D ′). It means that P . λ3 (P . λ2 (P . λ (P . Hence |P | ≥ 4.

Therefore, rc(J) ≥ 4. On the other hand, Syn(D ′) = J . Thus, D ′ is an MSA for

J = Syn(C), i.e., rc(J) = 4.

Let us assume now that
⋂n
i=1 L[Mi] 6= ∅. We are going to show that rc(J) > 4

in this case. Let u be a minimal reset word for C . By the arguments from the proof

of Lemma 5 and by the construction of C , one may note that u can be factorized

as u = vλ for some v ∈ {µ, λ}+. Also λ2 is necessarily a factor of u. Indeed, let us

assume that u = µk1λµk2λ . . . µksλ with ki 6= 0 for i > 1. If the image of the state

set of C under the action of u contains qr,1 or gr,1 for some r, then u /∈ Syn(C).

If u maps the state set of C to a subset of
⋃
t{ft,1} ∪ {h1, ζ1}, then we have to

apply λ to map this subset to ζ1. All in all we have u /∈ Syn(C). Moreover, by the

definition of the transition function of C we have λ3 ∈ J while λ, λ2 /∈ J . From the

arguments above it follows that every MSA for J has at least 4 states. Arguing by

contradiction, let us assume that there exists a 4-state automaton E = 〈P, {λ, µ}, γ〉
with Syn(E) = J . Without loss of generality suppose that P = {0, 1, 2, 3}. We

define the action of λ on the state set P . Since λ3 ∈ Syn(E) and λ, λ2 6∈ Syn(E),

there is a unique up to isomorphism way to define the action of λ on the states from

the state set P (see Fig. 5).

The word λ2µλ is in Syn(C), i.e., λ2µλ ∈ J . By the definition of the action

of λ in E we get that γ(P, λ2) = {2, 3}. On the other hand, λ2µ 6∈ Syn(C), thus

λ2µ 6∈ Syn(E). Hence {2, 3} under the action of µ is mapped to a two-element

subset which is translated by λ into {3}. So we need to guarantee the equality

γ({2, 3}, µ) = {2, 3}. The action of µ at states 2 and 3 can be defined in two possible

ways such that the last equality is true (see Fig. 6).

Fig. 5. The action of λ in E .

Fig. 6. The action of µ at states 2 and 3 in the DFA E .

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

Reset Complexity of Ideal Languages Over a Binary Alphabet 1187

Fig. 7. Possible ways to define the action of µ at 1 in E .

Note that λµλ 6∈ Syn(C) since τ1(qi,4, λµλ) = τ1(qi,2, λ) 6= ζ1. Therefore, λµλ is

not a reset word for E . Since we have γ({1, 2, 3}, λµλ) = {3} for each variant from

Fig. 6, the word λµλ should map the state 0 to a state different from 3. However

γ(0, λ) = 1, thus 1 under the action of µ is mapped to either 0 or 1. All in all, for

each variant from Fig. 6, we get two ways to define the image of 1 under the action

of µ (see Fig. 7).

It remains to define the image of 0 under the action of µ. Let us note that

µ2λ2 6∈ Syn(C) since τ1(qi,2, µ
2λ2) = τ1(qi,4, λ

2) = h1 6= ζ1. Since γ({2, 3}, µ2λ2) =

{3}, one of the equalities, γ(0, µ) = 0 or γ(0, µ) = 1, is required to take place.

Furthermore, we have γ({1, 2, 3}, µ2λ2) = {3} in the third and forth variants from

Fig. 7. It means that there exists only one possibility to put γ(0, µ) = 0 for these

variants. So we have six automata over the alphabet {λ, µ} shown in Fig. 8. It

remains to check whether J could coincide with the set of reset words for one of

these DFAs.

Fig. 8. Possible candidates for E .

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

1188 M. Maslennikova

Fig. 9. The power automata P(E1) and P(E2).

The DFA E1 from Fig. 8 is isomorphic to D ′ for which we have Syn(D)′ =

Syn(D). So Syn(E1) = Syn(D). By the assumption
⋂n
i=1 L[Mi] 6= ∅, hence by

Lemmas 2 and 5 we have J = Syn(C) 6= Syn(D). Therefore, E1 is not an MSA

for J . For E1 and E2 the equality Syn(E1) = Syn(E2) takes place. It can be easily

checked by the construction of power automata P(E1) and P(E2) (see Fig. 9). It

implies that E2 cannot be an MSA for J .

By the assumption c 6∈
⋂n
i=1 L[Mi] for all c ∈ Σ. It means that b 6∈ L[Mj] or,

equivalently, δj(qj , b) ∈ Qj\Fj for some index j. Take the word xbz. By the definition

of the transition function ϕ of A we have ϕ(Q, xbz) = {h, s}, so xbz 6∈ Syn(A).

By the definition of the morphism h : ∆∗ → {λ, µ}∗λ we have h(xbz) = µ3λµ2λλ.

By the definition of the transition function ϕ2 of C we get ϕ2(qj,1, µ
3λµ2λ) =

ϕ2(qj,1, µ
2λ) = pt,1, where pt = δj(qj , b) and pt 6∈ Fj . Hence ϕ2(qj,1, µ

3λµ2λλ) =

ϕ2(pt,1, λ) = h1. So we obtain that µ3λµ2λλ 6∈ Syn(C). Therefore, µ3λµ2λλ 6∈ J ,

but it is easy to see that µ3λµ2λλ ∈ Syn(E3). Hence E3 can not be an MSA for J .

Analogously, E4 can not be an MSA for J as well.

Note that (µλ)3 ∈ Syn(E5) and (µλ)3 ∈ Syn(E6). By the definition of the mor-

phism h : {λ, µ}∗λ → ∆∗, we have h((µλ)3) = (h(µλ))3 = a3. But the word a3 is

not reset for A (see Fig. 1). By the definition of the transition function of C it

implies that h(a3) 6∈ Syn(C), that is (µλ)3 6∈ J . In this way neither E5, nor E6 can

be an MSA for J . We have considered all possible candidates for a 4-state MSA for

J . Each automaton Ei cannot be chosen as an MSA for J . Also it is known that

rc(J) ≥ 4. Finally, we have rc(J) > 4.

Now we are in position to state the main result of the paper. Lemma 8 and

Proposition 7 imply the following theorem.

Theorem 9. RESET-INEQUALITY restricted to a binary alphabet is PSPACE-

complete for ` = 4.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

Reset Complexity of Ideal Languages Over a Binary Alphabet 1189

5. State Complexity of Languages Related to Slowly

Synchronizing Automata

In this section, we study series of “slowly” synchronizing automata. The first con-

struction belongs to Černý [3], the others are taken from [1]. Černý constructed

for each n > 1 a synchronizing automaton automaton Cn with n states, two input

letters and reset threshold (n − 1)2. Recall the definition of Cn. If we denote the

states of Cn by 0, 1, . . . , n− 1 and the input letters by a and b, the actions of these

letters are defined as follows:

i . b = i+ 1 for 0 ≤ i ≤ n− 2, and (n− 1) . b = 0;

i . a = i for 0 ≤ i ≤ n− 2, and (n− 1) . a = 0.

Due to [8] we have the following complexity result.

Proposition 10 (Proposition 2, [8]). sc(Syn(Cn)) = 2n − n.

In particular, it has been shown that each non-empty subset H ⊆ Q is reachable

in Cn, that is Q .w = H for some w ∈ Σ∗. It means that Cn is completely reachable.

Recently Don [4, Theorem 1] found a sufficient condition for complete reachability

that applies to the automata Cn. Another sufficient condition was presented in

Ref. [2] that both simplified and generalized Don’s one.

Two other series of slowly synchronizing automata has been considered in

Ref. [8]. Let us recall the corresponding constructions of n-state automata Ln and

Vn (see Fig. 10 and Fig. 11).

Proposition 11 (Proposition 3, [8]). sc(Syn(Ln)) = 2n − n.

Proposition 12 (Proposition 4, [8]). sc(Syn(Vn)) = 2n − n.

The automata Ln and Vn are completely reachable as well. Now we check other

series of slowly synchronizing automata for complete reachability and calculate for

Fig. 10. The automata Cn (left) and Ln (right).

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

1190 M. Maslennikova

Fig. 11. The automata Vn (left) and Fn (right).

several of them the state complexity and the reset complexity of its languages of

reset words. Recall the definition of the automaton Fn from [1]. If we denote the

states of Fn with n = 2m + 1 by 0, 1, . . . , n − 1, where n is odd, and the input

letters by a and b, the actions of these letters are defined as follows:

i . b = i+ 1 for 0 ≤ i ≤ n− 2, and (n− 1) . b = 0;

i . a = i for 0 ≤ i ≤ n− 3 or i = n− 1, and (n− 2) . a = 0.

The automaton Fn is presented on the Fig. 11.

We define the functions d(p, q) : Q×Q→ R and qd(p, q) : Q×Q→ R of distance

and quasi-distance between states p and q as follows (without loss of generality

assume that p < q):

d(p, q) = min{q − p, n+ p− q}, (1)

qd(p, q) =

{
d(p, q), if d(p, q) is even,

n− d(p, q), if d(p, q) is odd.
(2)

For example, d(1, n− 1) = qd(1, n− 1) = 2, d(0, n− 1) = 1, qd(0, n− 1) = n− 1.

If d(p′, q′) is odd for some pair {p′, q′}, then qd(p′, q′) > qd(p, q) for any {p, q}
with even distance. Given a two-state subset T = {p, q}, p < q. Let d = d(p, q),

t = qd(p, q), and define the parameter α by the following rules:

• if d is even, then α =

(n− q + n− 2) mod n, for d = n− q + p,

0, for T = {d− 2, n− 2},
n− 2− p, otherwise

• if d is odd, then α =

{
(n− q + n− 2) mod n, for d = q − p,
n− 2− p, for d = n− q + p.

The main goal of introducing such a parameter α is to decrease the quasi-distance

between p and q by 2 after applying the word bαa to T . Indeed, T . bα = {n−2, d−2}

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

Reset Complexity of Ideal Languages Over a Binary Alphabet 1191

for even d, and T . bα = {n−d−2, n−2} for odd d. Hence T . bαa = {n−2, t−2} . a =

{0, t− 2}. Note that, the word

w = bαa(bn−2a)t/2−1 (3)

synchronizes T . Indeed, T . bαa = {0, t − 2}. The state 0 is fixed by the word

u = bn−2a, and the state t − 2 under the action of the word u moves to the state

t − 4. Thus, after applying the word ut/2−1 to the set {0, t − 2} we obtain the set

{0}. Hence T .w = {0}.
The function qd(H) for a subset H ⊆ Q is defined by

qd(H) = min
p,q∈H,p6=q

qd(p, q). (4)

Given two subsets H and S of Q of size at least two, let us find qd =

min{qd(H), qd(S)}. Denote by {p, q} the pair with the quasi-distance qd (if there

are several such pairs, we construct for them corresponding words by (3) and choose

the pair with the shortest word w). Without loss of generality we may assume

{p, q} ⊆ H. The following auxiliary claim will be of use.

Lemma 13. Let {p, q} be the pair chosen as above, and w be the word constructed

for the pair {p, q} by (3). No other pair in H or S is synchronized by w.

Proof. Arguing by contradiction, suppose there is a pair T ′ = {p′, q′} (p′ < q′)

either in H or in S such that p′ . w = q′ . w and either p′ is different from p or q′

is different from q. Let t = qd(p, q), t′ = qd(p′, q′). By the definition of t we have

t′ ≥ t. Suppose 0 /∈ T ′ . bαa = {p′′, q′′}. We get p′′ . bn−2a = (p′′ − 2 + n) mod n,

and q′′ . bn−2a = (q′′ − 2 + n) mod n. The latter equalities mean that the distance

between the states p′′ and q′′ does not change, thus, for the word w to synchronize

T ′, it is necessary that p′′ = q′′. Since b is a permutation letter, the only possibility

for this to happen is p′ . bαa = q′ . bαa = 0, a contradiction with the supposition

0 /∈ {p′′, q′′}. So, 0 ∈ T ′ . bαa. If n−2 ∈ T ′ . bα, then T ′ . bα = {n−2, t′−2}. If t′ > t,

then T ′ . w = {0, t
′−t
2 }, a contradiction. Thus t′ = t, but in this case T ′ . bα = T . bα.

Since b is a permutation letter, we obtain T = T ′. Since p < q and p′ < q′ we have

p = p′, q = q′. A contradiction. So we have 0 ∈ T ′ . bα. Hence T ′ . bα = {0, t′ − 2}.
However T ′ . w = {0, t′ − 2− (t2 − 1) · 2} = {0, t′ − t+ 2}, and t′ − t+ 2 > 0 even in

the case t′ = t. Again a contradiction.

Now we are in position to prove the main result of this section.

Proposition 14. sc(Syn(Fn)) = 2n − n for every odd n > 3.

Proof. Construct for the automaton Fn = 〈Q,Σ, δ〉 its power automaton P(Fn).

Let H ⊆ Q be a given subset, denote δ−1(H,u) = {q ∈ Q | δ(q, u) ∈ H} for u ∈ Σ∗.

First we check that all nonempty subsets H ⊆ Q are reachable. By induction on

k = |H|. Case |H| = n is clear: the state set Q of the automaton Fn is the initial

state of P. Assume that any subset with cardinality 1 < k ≤ n is reachable. Now we

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

1192 M. Maslennikova

verify that all subsets H with |H| = k−1 are reachable. Let H = {p1, p2, . . . , pk−1},
and pi < pi+1 for all 1 ≤ i ≤ k − 2.

One may find a nonnegative integer ` such that δ−1(H, b`) = H ′ and 0 ∈ H ′.
Since n is odd, there is an integer m such that H ′′ = δ−1(H ′, bm), n − 2 6∈ H ′′

and 0 ∈ H ′′. Since b is a permutation letter, we have |H ′′| = |H ′| = k − 1. The

subset H ′′ ∪{n− 2} contains k states, therefore, this subset is reachable from Q by

induction hypothesis: Q .w = H ′′ ∪{n− 2} for some w ∈ Σ∗. Clearly H ′′ . a = H ′′,

(n − 2) . a = 0 and 0 ∈ H ′′ by the choice of m, thus Q .wabmb` = H ′′ . bmb` = H

and H is reachable from Q. Recall that all singletons are merged into a unique sink

terminal state in P(Fn), hence the automaton P(Fn) consists of 2n−1− (n−1) =

2n−n reachable states. Thus, the minimal automaton recognizing Syn(Fn) has at

most 2n − n states. Furthermore, Fn is completely reachable.

Next we prove that any two states of P(Fn) different from the terminal one

are inequivalent. Take two arbitrary subsets H and S of Q such that H 6= S.

We verify that there exists a word w ∈ Σ∗ such that H .w 6= S .w and at least

one of the equalities |H .w| = |H| − 1 and |S .w| = |S| − 1 holds. Let us find

t = min{qd(H), qd(S)}. Denote by {p, q} the pair yielding the minimum of quasi-

distance for H and S (the pair is chosen as above). Construct the corresponding

word w = bαa(bn−2a)t/2−1 for this pair. Without loss of generality we may assume

{p, q} ⊆ H.

Case 1: p, q ∈ H\S. If S (H, then |S| ≤ |H| − 2. By Lemma 13 we have

|H .w| = |H| − 1, and |S .w| = |S|. Thus

|S .w| = |S| ≤ |H| − 2 = |H .w| − 1 < |H .w|.

Therefore S .w 6= H .w. Suppose now S\H 6= ∅. We show that either (H\S) . w and

(S\H) . w do not intersect or (H\S) . w∩ (S\H) . w = {0}. Obviously, (H\S) . bα

and (S\H) . bα do not intersect. By the definition of α we have {p, q} . bα = {n−2, t−
2}, and {p, q} . bαa = {0, t−2}. Since n−2 ∈ (H\S) . bα we have n−2 6∈ (S\H) . bα.

Hence, (S\H) . bαa = (S\H) . bα. Thus, the subsets (H\S) . bαa and (S\H) . bαa

can have at most one common element, namely 0. For each r ∈ Q such that r 6= 0,

we have r . bn−2a = (n + r − 2) mod n, and for r = 0 we have r . bn−2a = 0.

Thus the word bn−2a shifts by 2 all the states different from 0. Moreover, through

t/2 − 1 steps no state different from p and q moves to 0, otherwise we would get

another pair synchronized by w, which contradicts Lemma 13. The latter argument

implies that the subsets (H\S) . w and (S\H) . w can have at most one common

element 0. If (H\S) . w 6= {0} or (S\H) . w 6= {0}, then obviously H .w 6= S .w.

It remains to study the case when (H\S) . w = (S\H) . w = {0}. By Lemma 13

it is possible if and only if H\S = {p, q} and S\H = {r} for some r ∈ Q. Then

we have r . w = 0. By the definition of w we get r . bαa(bn−2a)k = 0 for some

0 ≤ k ≤ t/2 − 1. If t = 2, then p . bαa = q . bαa = r . bαa = 0 and r ∈ {p, q},
a contradiction. So t > 2. Consider subsets H = H . bαa(bn−2a)t/2−2 and S =

S . bαa(bn−2a)t/2−2. Note that S ⊆ H and H\S = {2}. It remains to check that

there exists a word v ∈ Σ∗ such that H . v 6= S . v and at least one of the equalities

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

Reset Complexity of Ideal Languages Over a Binary Alphabet 1193

|H . v| = |H| − 1 and |S . v| = |S| − 1 holds. This situation will be studied later

inside the Case 3.

Case 2: p, q ∈ G = H ∩ S. If S (H, then |S| < |H|. By Lemma 13

|S .w| = |S| − 1 and |H .w| = |H| − 1, so S .w 6= H .w. The case H (S is con-

sidered symmetrically. So we may assume S\H 6= ∅ and H\S 6= ∅. We show that

(H\S) . w∩ (S\H) . w = ∅. Apply w to H\S and S\H. Let us note that (H\S) . bα

and (S\H) . bα have empty intersection. Next we apply the letter a to (H\S) . bα and

(S\H) . bα. All the states in these subsets are fixed by a. Otherwise some state moves

to 0 and we came to a contradiction with Lemma 13. Besides, by the choice of the

pair {p, q} either p . bαa = 0 or q . bαa = 0. Finally, we apply t/2− 1 times the word

bn−2a. Under the action of bn−2a the numbers of all states in both subsets decrease

by 2. Moreover, through t/2 − 1 steps no state from (H\S) . bαa or (S\H) . bαa

moves to 0, otherwise we would again get a contradiction with Lemma 13. Thus,

H .w 6= S .w.

Case 3: one of the states of the pair {p, q} belongs to G, and the other to H\S.

By Lemma 13 we have |S .w| = |S| and |H .w| = |H|−1. Let S\H 6= ∅. Lemma 13

implies 0 /∈ (S\H) . w. By the same argument as in the previous cases we obtain

that the sets (H\S) . w and (S\H) . w do not intersect. So H .w 6= S .w. If S (H

and moreover |S| < |H| − 1, then we get |S .w| = |S| < |H| − 1 = |H .w|, so

S .w 6= H .w. Finally, it remains to consider the case H = S ∪{r}. We may assume

r = 0 (otherwise we apply the word bn−r to S and H). Let S = {q1, q2, . . . , q`},
then H = {0, q1, q2, . . . , q`}. We have p = 0 and q = qi for some 1 ≤ i ≤ `.

Next we find a word u such that subsets H .u and S . u satisfy the equality

H .u\S . u = {0} and contain the pair {p, q} yielding the minimum of quasi-distance

for H .u and S . u. This purpose can be achieved, since b labels a cycle of odd

length in the DFA Fn, by playing with words of the form w1 = bn−2a, w2 = bm,

w3 = bn−2−qabq+2. Note that w1 shifts each state, apart from 0, by 2 on the cycle

labeled by b and 0 . w1 = 0, w2 shifts each state by m on the cycle labeled by b, w3

fixes each state, apart from q, that is p . w3 = p, for p 6= q, q . w3 = (q + 2) mod n.

If p, q ∈ S . u, then we apply the argument from Case 2 and find a word w such

that S . uw 6= H .uw and |H .uw| = |H .u| − 1 = |H| − 1. Otherwise repeat the

algorithm above applied to the subsets H .u and S . u. Through the finite number

of steps we will obtain the subsets H .u and S . u such that the corresponding pair

{p, q} is contained in S . u. And this case was studied above.

So we have that for two arbitrary subsets H and S there exists a word w ∈ Σ∗

such that H .w 6= S .w and at least one of the equalities |H .w| = |H| − 1 and

|S .w| = |S| − 1 holds. Next we consider subsets H .w, S .w. If none of them is

{0}, apply described algorithm again. It is clear that through the finite number

of steps we will find a word w with the property w ∈ Syn(H)\Syn(S) (or w ∈
Syn(S)\Syn(H)).

There is another example of n-automaton among known constructions of

slowly synchronizing automata that seems to be completely reachable. Namely, the

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

1194 M. Maslennikova

definition of the automaton Kn with odd n provides the desired series. If we denote

the states of Kn with n = 2m+ 1 by 0, 1, . . . , n− 1, where n is odd, and the input

letters by a and b, the actions of these letters are defined as follows:

i . b = i+ 1 for 0 ≤ i ≤ n− 2, and (n− 1) . b = 0;

i . a = i+ 1 for 0 ≤ i ≤ n− 4 or i = n− 2, (n− 3) . a = 0, (n− 1) . a = 2.

Conjecture. sc(Syn(Kn)) = 2n − n for every odd n > 5.

The conjecture has been confirmed by computer experiments for n ≤ 21. In

general it seems that the proof of the conjecture can be obtained using the same

standard technique as has been implemented in Proposition 14. So we omit more

details here because of space constraints. It has been shown in [7, Theorem 1] that

the reset complexity of the languages of reset words for Cn, Ln and Vn is equal

to n. It means that these n-state automata are MSA’s for the corresponding ideal

languages. We prove that the reset complexity of Syn(Fn) and Syn(Kn) is equal

to n as well.

Theorem 15. For every odd n > 3, rc(Syn(Fn)) = n. For every odd 5 < n < 23,

rc(Syn(Kn)) = n.

Proof. The series of synchronizing automata Fn guarantees that rc(Syn(Fn)) ≤ n
for n > 3. Arguing by contradiction suppose that rc(Syn(Fn)) < n. It means

that there exists some synchronizing DFA B with less than n states such that

Syn(B) = Syn(Fn). Construct its power automaton P(B) consisting only of

reachable subsets. The DFA P(B) has at most 2n−1 − (n − 1) inequivalent states

and recognizes Syn(Fn). However, by Proposition 14 we have sc(Syn(Fn)) =

2n − n, a contradiction. Thus rc(Syn(Fn)) = n. The other equality is obtained

analogously.

Another known series of slowly synchronizing automata do not lead to com-

pletely reachable series. For example, power automata for n-automata En and E ′n
(see Fig. 12) do not contain at least 2n−2 − 1 states. Indeed, any subset containing

{n−2, n−1} is not reachable in En, since n−2 does not belong to the image of the

state set {0, . . . , n−1} under the action of a and n−1 does not belong to the image

of the state set {0, . . . , n−1} under the action of b. So sc(Syn(En)) ≤ 3·2n−2−n+1.

Analogously, sc(Syn(En)) ≤ 3 ·2n−2−n+1. Computer experiments show that these

upper bounds seem to be precise values of the state complexity of the languages of

reset words for En and E ′n.

Further it would be interesting to study the reset complexity and the state

complexity of languages related to slowly synchronizing automata over non-unary

alphabet [5]. Finally, we summarize known and obtained in the present paper com-

plexity results related to slowly synchronizing automata in the following table. We

denote by In the language In = Syn(An). The values of reset thresholds for the

corresponding automata are taken from [1].

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

Reset Complexity of Ideal Languages Over a Binary Alphabet 1195

Fig. 12. The automata En (left) and E ′n (right).

Table 1. Complexity characteristics of languages related to slowly synchronizing

automata.

The DFA An n rt(An) rc(In) sc(In)

Cn n > 1 (n− 1)2 n 2n − n
Ln n > 4 n2 − 3n+ 4 n 2n − n
Vn n > 2 n2 − 3n+ 3 n 2n − n
Fn odd n > 3 n2 − 3n+ 3 n 2n − n
Kn odd 5 < n < 23 n2 − 4n+ 7 n 2n − n
En n > 3 n2 − 3n+ 2 less or equal

to n

less or equal to

3 · 2n−2−n+ 1

E ′n n > 2 n2 − 3n+ 2 less or equal
to n

less or equal to
3 · 2n−2−n+ 1

Acknowledgments

The author acknowledges anonymous reviewers for comments and suggestions. Also

the author acknowledges support by the Russian Foundation for Basic Research,

Grant No. 16-01-00795, the Ministry of Education and Science of the Russian Fed-

eration, Project No. 1.3253.2017, and the Competitiveness Enhancement Program

of Ural Federal University.

References

[1] D. S. Ananichev, V. V. Gusev and M. V. Volkov, Slowly Synchronizing Automata and
Digraphs, MFCS 2010, LNCS, eds. P. Hliněný and A. Kučera, Vol. 6281 (Springer,
Heidelberg, 2010), pp. 55–65.

[2] E. A. Bondar and M. V. Volkov, Completely reachable automata, DCFS 2016, LNCS,
eds. C. Câmpenu, F. Manea and J. Shallit, Vol. 9777 (Springer, 2016), pp. 1–17.

[3] J. Černý, Poznámka k homogénnym eksperimentom s konečnými automatami, Mat.-
Fyz. Cas. Slovensk. Akad. Vied. 14, [in Slovak], (1964), pp. 208–216.

[4] H. Don, The Černý conjecture and 1-contracting automata, Electr. J. Comb. 23(3)
(2016) P3.12.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 23, 2019 10:40 112-IJFCS 1940034

1196 M. Maslennikova

[5] A. Kisielewicz and M. Szyku la, Synchronizing automata with extremal properties,
MFCS 2015, LNCS, eds. G. F. Italiano, G. Pighizzini and D. Sannella, Vol. 9234
(Springer, 2015), pp. 331–343.

[6] D. Kozen, Lower bounds for natural proof systems, 18th Annual Symposium on Foun-
dations of Computer Science, IEEE (New York, 1977), pp. 254–266.

[7] P. Martygin, Computational Complexity of Certain Problems Related to Carefuuly
Synchronizing Words for Partial Automata and Directing Words for Nondetermin-
istic Automata, Theory Comput. Sci. 2014, 54(2) ed. F. Ablayev, (Springer, 2014),
pp. 293–304.

[8] M. I. Maslennikova, Reset Complexity of Ideal Languages, arXiv : 1404.2816 (2012).
Int. Conf. SOFSEM 2012.

[9] M. Maslennikova, Complexity of checking whether two automata are synchronized
by the same language, DCFS 2014, LNCS, eds. H. Jürgensen, J. Karhumäki, Al.
Okhotin, Vol. 8614 (Springer, Heidelberg, 2014), pp. 306–317.

[10] A. R. Meyer and J. F. Michael, Economy of description by automata, grammars, and
formal systems, 12th Annual Symposium on Switching and Automata Theory, IEEE
(New York, 1971), pp. 188–191.

[11] F. R. Moore, On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on
Computers, C-20(10), IEEE (New York, 1971), pp. 1211–1214.

[12] D. Perrin, Finite automata, Handbook of Theoretical Computer Science, ed. J. van
Leewen (Elsevier, B., 1990), pp. 1–57.

[13] L. J. Stockmeyer and A. R. Meyer, Word problems requiring exponential time, Pro-
ceedings of the 5th Annual ACM Symposium on Theory of Computing STOC ’73,
ACM, eds. A. V. Aho (New York, 1973), pp. 1–9.

[14] M. V. Volkov, Synchronizing automata and the Černý conjecture, LATA 2008,
LNCS 5196, eds. C. Mart́ın-Vide, F. Otto and H. Fernau (Springer, Heidelberg, 2005),
pp. 11–27.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
77

-1
19

6.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.1

42
.3

5.
54

 o
n

09
/2

8/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

